

Measurement of Λ_c^+ production in Pb-Pb collisions with the ALICE experiment at the LHC

Clara Bartels (University of Liverpool) on behalf of the ALICE collaboration

Heavy-ion collisions at ALICE

- Aim: study quark-gluon plasma (QGP)
 - Colour-deconfined state predicted by QCD
 - Created in ultra-relativistic heavy-ion collisions
- High-multiplicity environment:
 - Need excellent vertexing and particle identification (PID) capabilities

$\Lambda_{\rm c}^{\ *}$ production in heavy-ion collisions

Quark gluon plasma:

- created during Pb-Pb collision
- Quickly cools down and hadronises

Heavy flavour quarks:

- Created at start of interaction
- Interact with medium during all stages of hadronisation
- Excellent probe of QGP evolution

Hadronisation mechanisms

Fragmentation:

- Energetic quark or gluon excites the vacuum and creates a pool of quarks and antiquarks
- It combines with them into hadrons
- Predicted to be universal in collision systems

Coalescence:

- Quark and gluons get close enough to each other in the QGP to recombine into hadrons directly
- Predicted to occur in QGP

Measurements in pp and p-Pb

 Λ_{c}^{+}/D^{0} ratio in pp collisions:

- Underestimated by models using fragmentation function tuned on e⁺e⁻ collisions
- Better described by model assuming coalescence in pp collisions also

C. Bartels

Measurements in pp and p-Pb

 Λ^{+}/D^{0} ratio in p-Pb collisions:

- Shift towards higher p_{τ} compared to pp collisions
- $p_{\rm T}$ dependence not observed in measurements from e⁺e⁻ and ep collisions

The ALICE detector

- One of the 4 main LHC experiments
- Optimised for heavy ion (Pb-Pb) collisions
 - Track and PID down to low p_{T}
 - Identification of short-lived particles
 - Low material budget
- Particle identification achieved with several different techniques and detectors

C. Bartels

- two centrality classes:
 - 0-10% (central)
 - 30-50% (semicentral)
- Four p_{T} bins:
 - 4 GeV/c 6 GeV/c
 - 6 GeV/c 8 GeV/c
 - 8 GeV/c 12 GeV/c
 - 12 GeV/c 24 GeV/c

central collision

semi-central collision

CERN

Reconstruction of the Λ^+ baryon

 Λ_{c}^{+} = udc, m = 2286.46 ± 0.14 MeV, ct = 60µm

 $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ (BR = 6.28%) $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$ (BR = 1.59%)

- Reconstructed via decay channel
- Candidates built as triplets with correct charge sign
- kinematic and topological cuts applied using Boosted Decision Trees (BDT)

Training the BDT model

- Training input:
 - MC production (signal)
 - Data sideband (background)
- Trained on kinematic and topological variables, e.g.
 - Decay length
 - Distance of closest approach (dca)
 - Pointing angle θ

Training the BDT model

ALICE CERN

- Training input:
 - MC production (signal)
 - Data sideband (background)
- Trained on kinematic and topological variables, e.g.
 - Decay length
 - Distance of closest approach (dca)
 - Pointing angle θ

C. Bartels

Training the BDT model

- Training input:
 - MC production (signal)
 - Data sideband (background)
- Trained on kinematic and topological variables, e.g.
 - Decay length
 - Distance of closest approach (dca)
 - Pointing angle θ
- BDT cut decided using significance optimisation

Invariant mass distribution

C. Bartels

Annual Liverpool HEP meeting 2022

Invariant mass distribution

 $12.0 < p_{_{T}} < 24.0$ (prob > 0.70)

C. Bartels

 $\frac{f_{\text{prompt}} \times N^{\Lambda_c}_{|y| < y_{\text{fid}}}}{(A \times \epsilon)_{\text{prompt}}}$ Corrected yield =

Calculating the corrected yield

Corrected yield =
$$\frac{f_{\text{prompt}} \times N_{|y| < y_{\text{fid}}}^{\Lambda_c}}{(A \times \epsilon)_{\text{prompt}}}$$

• Raw yield

C. Bartels

Corrected yield =
$$\frac{f_{\text{prompt}} \times N^{\Lambda_c}_{|y| < y_{\text{fid}}}}{(A \times \epsilon)_{\text{prompt}}}$$

- Raw yield
- Feed-down correction

Non-prompt $\Lambda_{\rm c}^{\, *}$ production: $\Lambda_b^0 o \Lambda_c^+ + X$

Calculating the corrected yield

$$\text{Corrected yield} = \frac{f_{\text{prompt}} \times N_{|y| < y_{\text{fid}}}^{\Lambda_c}}{(A \times \epsilon)_{\text{prompt}}}$$

- Raw yield
- Feed-down correction
- Correction for detector efficiency and acceptance

Corrected Yield

- Corrections are applied to the yield:
 - Fragmentation function
 - Efficiency
 - Detector acceptance
- Find corrected yield

Corrected Yield

- Corrections are applied to the yield:
 - Fragmentation function
 - Efficiency
 - Detector acceptance
- Find corrected yield
- Comparison to measurement in other decay channel

Corrected Yield

- Corrections are applied to the yield:
 - Fragmentation function
 - Efficiency
 - Detector acceptance
- Find corrected Yield
- Comparison to measurement in other decay channel

- A quark gluon plasma can be created in heavy-ion collisions
- Heavy flavour hadrons are a useful probe into hadronisation mechanisms
- Lc production measured via corrected yield in two centrality classes
- Compatible with measurements from different decay channel
- Next steps:
 - Evaluate systematic uncertainties
 - Merge with pK_s⁰ channel