DarkSide-20k production

Y1 student presentations **Tuesday 14th June 2022**

C. Barajas, L. Boynton, P. Cooke, A. Greenall, D. Hollywood, T. Jones¹, W. Jones, M. Lockwood, K. McCormick D. Sim, P. Sinclair, <u>A.Taylor</u>, J. Taylor¹, P. Timko, J. Vossebeld¹, S. Wonsak, M. Whitley

¹ Supervisory team

A brief look at the experimental design The University of Liverpool's contribution

2. Specific contributions made to the project

Part 1 - Experiment

- Dark Matter (DM) direct detection experiment
- Low background radiation
- Long running experiment
- DM candidate:
 - Weakly Interacting Massive Particle (WIMP)
 - Beyond standard model particle

Laboratori Nazionali del Gran Sasso Gran Sasso d'Italia

https://www.lngs.infn.it/en/lngs-overview

LNGS Hall C

Kish, A. https://indico.cern.ch/event/1041835/

passive shielding, LAr (700t)

copper Faraday cage

veto structure

TPC LAr (50t), fiducial volume 20t <

Kish, A. https://indico.cern.ch/event/1041835/

Veto schematic

Adapted from Santone, D., https://indico.cern.ch/event/797094/contributions/3367967/attachments/1827415/2991228/ds20k_santone.pdf

copper enclosure

Tile integration

Adapted from Santone, D., https://indico.cern.ch/event/797094/contributions/3367967/attachments/1827415/2991228/ds20k_santone.pdf

Part 2 - Contributions

- Software
 - QR code reading, generation, tiling: database integration
 - Visualising SmartScope log files
- Tooling, handling techniques for edgeless veto tiles
- Numerous "Glue" and flux trials
- Manufacture of prototype tiles early in the project lifecycle

Early electrical and mechanical characterisation

QR Codes

Cross-platform software to read QR codes for use at all UK sites

- Database integration
- Packaged as a wheel for easy installation
- Python, OpenCV [1]
- Software to automate generation of QR codes for multiple PCBs
 - Etch a sheet of PCBs in a single operation
 - Python, qrencode [2, 3], ImageMagick [4]

[1] <u>https://opencv.org</u>

[2] <u>https://fukuchi.org/works/qrencode/</u>

[3] <u>https://github.com/fukuchi/libqrencode</u>

[4] <u>https://imagemagick.org</u>

Visual inspection, handling bracket

Allows scanning of the wire-bonded front-side

Visual inspection

 Automated inspection techniques underway (RHUL) Can be tricky: specular reflections from wire bonds

Vacuum tooling

Affords the ability to deposit solder and mount SiPMs with precision

Stencils

solder deposition (laser cut)

SiPM alignment (chemically etched)

Front-side components: place SiPMs

Re-use of ATLAS tooling for solder deposition and SiPM alignment

Metrology: front-side component flatness

vPDU production and testing

DarkSide collaboration meeting - Sardinia, Italy Wednesday 4th June 2022

Z. Balmforth⁵, L. Boynton³, S. Cross⁶, P. Franchini², D. Hollywood³, T. Jones³, S. Hill⁵, S. Jois⁵, I. Katsioulas¹, S. Koulosousas⁵, P. Knights¹, E. Leason⁵, J. Lipp⁶, O. Macfadyen⁵, I.Manthos¹, J. Monroe⁵, K. Nikolopoulos¹, D. Price⁴, G. Rogers¹, D. Santone⁵, D. Sim³, P. Sinclair³, M. Spangenberg⁷, <u>A.Taylor³</u>, J. Taylor³, J. Vossebeld³, M. Whitley³

University of Birmingham, 2. Lancaster University, 3. University of Liverpool, 4. University of Manchester,

5. Royal Holloway University of London, 6. STFC Interconnect, 7. University of Warwick

https://agenda.infn.it/event/31211/contributions/172319/

Science and Technology **Facilities** Council

Future

- Transition from manual to automated production for DarkSide-20k Gantry system
- Work packages 2 and 3
 - LSDC detector assembly automation
 - Flip-chip bonder
 - New generation probe station
- UV-SiPM research

Backup slides

Two-stage assembly

Indium Corp. 52In48Sn, 118°C

2

150°C for 5 min 200°C for 1 min

24x glass chips, flux dispersion

X-offset 1.4625mm

Pre-bake

Post-bake

QR-codes

- Facilitates database integration
- Target: 1cm square copper/gold pad
- Selected solution: QR Code Model 2 Version 1
 - The minimum possible QR code matrix (21 x 21 pixel)
 - Maximum physical pixel size (~0.37mm square)
 - Maximum available error correction
 - Can store: 17 numerals (raw space: 72-bits)

Widely adopted standard, readable on most devices/libraries

QR-code data format

Human-readable contents: 22040803012345123

Year	Month	Day	Production flag	Version	Serial No.	Part No.
YY	MM	DD	F	V.V	SSSSS	PPP
22	04	08	0/1	9.9	99999	999

- Recent change from 9999/9999 to 99999/999 (S. No. / P. No.)
- Possibility to store more data with bit-packing

Wire-bond pull tests: strength

Mechanical test piece "Tile 5", 2021 11 11, n=22 Mechanical test piece, 2022 2 22, n=17, ref=990

BHAM vTile+ v2 PCB 15, Ti/TiN, 2022 04 04, pre-LN₂ dip, n=23, ref=1208 BHAM vTile+ v2 PCB 15, Ti/TiN, 2022 05 20, post-LN₂ dip, n=47, ref=1226

Wire-bond pull tests: failure modes

Failure type	Tile5	990	1208	1226
0 = No Recording (user error)	0	0	0	0
1= Source Heel Break ^A	14	8	19	37
2= Dest Heel Break ^B	8	9	4	10
3= Source foot lift ^C	0	0	0	0
4= Destination foot lift D	0	0	0	0
5= Span Break ^E	0	0	0	0

^A bond separates at the SiPM pad, ^B bond separates at the PCB pad, ^C pad separates from SiPM, ^D pad separates from PCB, ^E wire bond breaks

1. Abridged production pipeline

Liverpool / STFC Interconnect

LN₂ dip

- to avoid condensation formation
- Tests performed on:
 - BHAM vTile+ PCB 14, Gold-backed SiPMs, initial ¹/₄ wafer
 - BHAM vTile+ PCB 15, Ti/TiN SiPMs, 3 wire bonds per pad

Dip duration approximately 30 seconds, until boiling effect subsided Dipped parts were moved to an oven at 60°C with a nitrogen supply

LN₂ dip

- Positions of SiPMs / wirebonds r cycling:
 - Room temperature
 - LN₂
 - Oven 60°C (nitrogen)
 - Room temperature

Positions of SiPMs / wirebonds remained unchanged during thermal

PCB 15 before

PCB 15 after

Population - front side

Manual (Liverpool)

- Aims to add gantry automation date TBC
- Automation (STFC)
 - Indium solder deposition (Asymtek)
 - Precision SiPM placement (FC150)
 - Application of pressure (FC150)
- "Low temperature" bake: 130-140°C no component shedding

Allowed manufacture of prototype tiles early in the programme Solder and SiPM alignment stencil based assembly method

Further information

Kish, A., 2021, DarkSide-20k dual-phase argon TPC for particle dark matter detection

https://indico.cern.ch/event/1041835/

