STERILE NEUTRINO SEARCH AT THE FERMILAB SHORT BASELINE NEUTRINO (SBN) PROGRAMME

Beth Slater

Supervised by Costas Andreopoulos

Assembly tent with TPC inside

Cathode and Field Cage

Membrane Cryostat installation in progress

Construction of SBND [1]

STERILE NEUTRINOS

- Limit of 3 active flavours of neutrinos
 - Z boson resonance width
- Experimental anomalies may hint at a fourth neutrino
 - Reactor: deficit of $\bar{\nu}$ flux at short baseline
 - Gallium: deficit of v_e flux from Ar-37 and Cr-51 electron capture decays.
 - Accelerator (LSND and MiniBooNE): excess of ν_e flux from $\nu_{\mu} \rightarrow \nu_e$
 - 3 active + 1 sterile is common hypothesis
- Test existence via mixing with active flavours

SHORT BASELINE NEUTRINO (SBN) PROGRAMME

- 3 LArTPC detectors along the neutrino beam
 - SBND, MicroBooNE, and ICARUS
- Physics aims:
 - Searching for sterile neutrinos
 - Sensitive to oscillations with $\Delta m^2_{41} \simeq \mathcal{O}(1 \ eV^2)$
 - v_{μ} disappearance, v_e appearance and disappearance λ_{μ} Machado PAN, et al. 2019.
 - Studying neutrino-argon interactions
 - Searching for new physics
- SBND
 - Measure about 2 million CC neutrino-Argon interactions each year
 - Greater statistics than have previously been possible
 - Closest so probes higher Δm^2

SBND: SET UP

PRISM

- Takes measurements at different locations within the detector
- Different v_{μ} samples have different energy spectra
 - v_{μ} produced by pions, if similar angle to beam then they are boosted
 - v_e produced by kaons, heavier (lower energy) so effect of boost is diminished
- Use different samples to constrain oscillation
- SBND (110m baseline) split into 8 bins (8 samples)
 - The statistics in each bin are large so the systematics dominate

FITTING PROCEDURE WITHIN SBN USING VALOR

- Fit inclusive v_{μ} CC inclusive events
- Template fit using 3+1 hypothesis
- Try to fit prediction with oscillation to data without
- χ_0^2 calculated at every grid point
- Float any included systematics within $\pm 5\sigma$ of their limits
 - Flux: 13
 - Interaction: 40
- Apply profiling and minimise the binned-likelihood (χ^2)

usive
$$v_{\mu}$$
 CC inclusive events
ate fit using 3+1 hypothesis
fit prediction with oscillation to data without
culated at every grid point
ny included systematics within $\pm 5\sigma$ of their limits
c: 13
eraction: 40
profiling and minimise the binned-likelihood (χ^2)

$$\chi^2 = -2 \ln \mathscr{L}(\vec{\theta}; \vec{f}) = -2 \ln \mathscr{L}_0(\vec{\theta}; \vec{f}) - 2 \ln \mathscr{L}_{phys}(\vec{\theta}; \vec{f}) - 2 \ln \mathscr{L}_{syst}(\vec{f})$$

$$\chi^2_0 = -2 \ln \mathscr{L}_0(\vec{\theta}; \vec{f}) = 2 \sum_{b,d,s,r} \left(n_{b;d;s}^{data}(r) \cdot \ln \frac{n_{b;d;s}^{data}(r)}{n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f})} + (n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f}) - n_{b;d;s}^{data}(r))) \right)$$
[3]

 -10^{2} F

SENSITIVITY STUDY: v_{μ} DISAPPEARANCE STATISTICS ONLY CHECK

- No systematics included
- Same sensitivity as standard analysis (as expected)
- Can split into contributions from each OA bin
- Shows predicted behaviours
 - Increase in sensitivity when more events
 - Decrease in flux away from beamline
 - Increase in mass results in more events

SENSITIVITY STUDY: v_{μ} DISAPPEARANCE WITH SYSTEMATICS

- Perform disappearance analysis 8 times jointly with different energy
- Worsening due to inclusion of systematics
- Worsening lesser when using position dependent systematics
- See improvement compared to standard
- Increase number of observables within the fit
- As the energy is different the observables are not the same in each sample

FURTHER WORK

Validation procedures

- Plotting the post-fit systematic parameters
- Showing parameters in different OA slices
- Mock data studies
- Expand to other oscillation channels:
 - v_e appearance and disappearance

LTA

- March-November 2022
- June-September 2023
- Thesis
 - Near detector treatment of constraints
 - First 3 months of data: v_{μ} CC

ANY QUESTIONS?

<u>b.slater I @liverpool.ac.uk</u>

References

 Schukraft A. ICARUS + SBND Short Baseline Neutrino Program. NEUTRINO2022, Seoul; May 31, 2022.
 Acciarri R, Adams C, An R, et al. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv:150301520 [hep-ex, physics:physics]; 2015 Mar.
 Jones R. Muon-neutrino disappearance with multiple liquid argon time projection chambers in the Fermilab Booster neutrino beam. University of Liverpool; 2021.
 SBND Collaboration, Del Tutto M, et al.. SBND-PRISM: Sampling Multiple Off-Axis Neutrino Fluxes with the Same Detector. Conference Talk at APS April Meeting; 2021.

[5] Kroupova T. SBND PRISM Oscillations. SBND Collaboration Meeting; July 2021.

BACKUP

BACKUP:VALOR

- Uses predicted (MC) neutrino interaction event rates as the main input
- GENIE is used to generate the neutrino interaction events
- Can perform exclusion or allowed sensitivity studies
- Fits performed by comparing MC predictions with oscillations sets of data without oscillation using a binnedlikelihood method
- The sensitivity curves in the 2D parameter space are lines of constant $\chi^2_{critical}$

Procedure

- χ^2 is comprised of contribution from the experiment's own data and penalty terms
- Split phase space into a 40 × 40 grid, logarithmically spaced
- Perform fit with oscillation parameters at each grid point
- Float any included systematics within $\pm 5\sigma$ of their limits (initially global best-fit)
- Apply profiling and minimise the binned-likelihood
- Extract the χ^2 of the fit at every point in the parameter space

BACKUP:VALOR

$$\chi^2 = -2\ln \mathscr{L}(\vec{\theta}; \vec{f}) = -2\ln \mathscr{L}_0(\vec{\theta}; \vec{f}) - 2\ln \mathscr{L}_{phys}(\vec{\theta}; \vec{f}) - 2\ln \mathscr{L}_{syst}(\vec{f})$$

$$\chi_0^2 = -2\ln\mathscr{L}_0(\vec{\theta}; \vec{f}) = 2\sum_{b,d,s,r} \left(n_{b;d;s}^{data}(r) \cdot \ln \frac{n_{b;d;s}^{data}(r)}{n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f})} + (n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f}) - n_{b;d;s}^{data}(r)) \right)$$

- χ_0^2 is calculated at each point in the oscillation parameter space
- χ^2_{phys} is the physics penalty based on prior constraints on new physics parameters
- χ^2_{syst} is the systematic penalty applied to profile out the systematics as they are floated in the fits $(\pm 5\sigma)$
- n^{data} dataset with no oscillations (exclusion sensitivity used best-fit values)
- n^{pred} MC prediction with oscillation parameters (\vec{f}) set to grid point values $(\vec{\theta})$
 - Includes info on oscillation probability, systematic response, event rate template, and POT scale factor

BACKUP: PRISM

- Interaction Model
 - Energy dependence of the cross section
 - Nuclear effects at ~I GeV
 - v_e/v_μ cross section
 - Test lepton flavour universality
- Sterile Neutrino Oscillations
 - Improved sensitivity using position-dependant systematics
- BSM searches
 - New particles

BACKUP: PRISM

- Fitting 8 samples jointly, all with different energy
- With a single spectrum it is possible to get the prediction (osc) close to the data (no osc)
- With 8 spectra with different observables, the systematic variation will look different in each so can't get as close to data.
- Hence, it is more difficult for systematic effects to mask the oscillation signal to same degree in all bins

