

Modelling Reactor $\overline{\nu_e}$ 14/06/2022

Alexander Morgan

Supervisor: Jon Coleman

A.P.Morgan@Liverpool.ac.uk

INTRODUCTION

- Reactor $\overline{\nu_e}$ produced in β^- decay following fissions
 - ~10²⁰ produced per second per GW_{TH}
- $\overline{\nu_e}$ spectra reflects reactor operation
 - Reactor startup/shutdown
 - Fissile inventory
- $\overline{\nu_e}$ detection has exciting prospects within nuclear safeguards
 - Detection method: Inverse beta decay
 - $\overline{\nu_e} + p \rightarrow n + e^+$

HUBER-MUELLER SPECTRA(1)

- Reactor $\overline{\nu_e}$ emissions due to fission of ²³⁵U, ²³⁸U, ²³⁹Pu and ²⁴¹Pu
- Gold standard model: Huber-Mueller
- Constructed from beta branches of nuclei produced in fission of these actinides
- Huber-Muller is incomplete
 - ~10% of the spectra is fitted
 - Not all beta branches are known
- Experimentally verified against ILL data

MILLS MODEL(2)

- Produced alternative $\overline{v_e}$ spectrum
- Working with Robert Mills at NNL: constructed spectra from database of $\overline{v_e}$ energies for neutron induced fission
- Must consider which interactions best reflect normal reactor operation
- Independently produced
 - Not normalised to ILL data
 - May be produced with different beta branches
- Comparison to Huber-Mueller may indicate missing nuclear data

Mills, R., et al., 2018. Modelling of the anti-neutrino production and spectra from a Magnox reactor. EPJ Web of Conferences, 170, p.07008.

REACTOR MODELLING(1)

- Over course of operation- fissile inventory of reactors changed
- Benchmark models of the flux evolution of each UK reactor were produced
- Utilised NNL fission fraction database
 - Fission fractions of major actinides as function of [E,R,I]
 - Produce models of reactor parameter evolution
 - Extract and interpolate based on these models
- Calculate number of fissions within the core
 - $\sum_{n} \sum_{k} \frac{P\alpha}{\bar{E}} f(E^{n}, R^{n}, I^{n}, k)$
 - Convolve with $\overline{
 u_e}$ emission model
- Benchmarked detection rate for kilo-tonne, detector situated at Boulby Mine

REACTOR MODELLING(2)

- Flux evolution of Sizewellcore
- As proportions of nuclides within the core change, $\overline{\nu_e}$ emission changes

DETECTOR RATE ESTIMATION

- From evolution, consider detection rate.
- Introduce IBD-cross section, distance, and oscillation effects

REACTOR ANOMALY(1)

- Reactor experiments have detected unexplained excess at 5 MeV
- Possible reasons:
 - Incomplete reactor $\overline{v_e}$ models
 - New physics
- Investigated 5 MeV bump from model perspective
- Used Mills Model
 - Independently produced from Huber-Mueller
- Combined Mills Model + Huber-Mueller
 - Uncertainty envelope of both models

'Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay' (2017). doi: 10.1088/1674-1137/41/1/013002.

PARAMETERISING ANOMALY(1)

- Analysed time required to detect 5 MeV anomaly given each model
- Must parameterise anomaly
- No theoretical fitting of anomaly
 - Cannot judge based on χ^2
- Better to use shape
 - FWHM, integral, centroid, residuals
 - Skew-Normal
 - 1st order polynomial + Gaussian
 - 2nd order polynomial + Gaussian
 - Used Skew-Normal as simplest fit

FITTING ANOMALY(3)

EXPERIMENTAL SENSITIVITY(1)

- Calculated time required to detect anomaly at varying distances
 - Tonne-scale detector
 - Kilo-tonne scale detector
- Same detection principles as with reactor models
- Oscillation effects applied to bins
- Statistical error: $\frac{\sqrt{N}}{N}$
- Full error: adds theoretical error in

EXPERIMENTAL SENSITIVITY(2)

• Calculated time required to detect anomaly to significance thresholds

EXPERIMENTAL SENSITIVITY(3)

SUMMARY

- Produced models for evolution of reactor cores in UK fleet
 - Benchmarked for a detector at Boulby
- Compiled alternative $\overline{v_e}$ spectral model
 - Mills Model: Direct summation of $\overline{v_e}$ emitted from beta branches
 - Assumed "normal" reactor operation: thermal fissions only
- Estimated uncertainty limits on reactor modelling with combined spectra
- Calculated experimental sensitivity for the reactor anomaly
- FURTHER WORK:
 - Prepare Mills Model work for publication
 - Error on FFRs

BACKUP(1)

• $\overline{v_e}$ survival probability given:

•
$$1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 1.27 \Delta m_{12}^2 \frac{L}{E} - \sin^2 2\theta_{13} \sin^2 1.27 \Delta_{23}^2 \frac{L}{E}$$

- L/E: Distance/Energy
- Only $\overline{v_e}$ are detected via IBD in detectors
- Shorter oscillations- atmospheric scale
- Larger oscillations- solar scale

BACKUP(2)

- Detected via IBD interaction
- Cross section: $\sigma_{tot}^{(0)} = 0.00952 \left(\frac{E_e^{(0)} p_e^{(0)}}{1 \, MeV} \right) \times 10^{-42} \, cm^2$
 - $E_e^{(0)} = E_{\overline{\nu_e}} \Delta$
 - $\Delta = M_p M_n$ • $p_e^{(0)} = \sqrt{E_e^2 - m_e^2}$
 - Vogel, P. and Beacom, J. F. (1999) 'The angular distribution of the reaction $\overline{v_e} + p \rightarrow e^+ + n \text{ doi: } 10.1103/PhysRevD.60.053003.$

•
$$N_{Detected} = \frac{1}{4\pi R^2} \cdot Flux \cdot N_p \cdot \epsilon \cdot \sigma_{tot}^{(0)}$$

BACKUP(3)

BACKUP(4)

- Compared against unfolded Daya-Bay data
 - Removes detector effects + time dependencies
 - Daya Bay collaboration et al. (2021) 'Antineutrino Energy Spectrum Unfolding Based on the Daya Bay Measurement and Its Applications'. doi: 10.1088/1674-1137/abfc38.

BACKUP(5)

BACKUP(6)

Fit:	Skew Normal	2 nd order Polynomial + Gaussian	1 st order Polynomial + Gaussian
FWHM [MeV]:	1.68	1.64	1.69
Integral [MeV]:	2.64	2.64	2.64
Centroid [MeV]:	6	6.02	6.04
Residuals	-1.1×10^{-4}	-7.9×10^{-5}	-1.0×10^{-4}
Total Residuals	2.2×10^{-4}	1.6×10^{-4}	2.1×10^{-4}

BACKUP(7)

