Anomalies with muons at LHCb

7 Nov 2022 Niels Tuning (LHCb, Nikhef)

Muon Precision Physics Workshop, Liverpool

Semileptonic CC $b \rightarrow cl^{-}v$ "Semileptonic" FCNC EWP Penguin $b \rightarrow sl^+l^-$

Back in the days... (1995)

CERN/LHCC 95-5 LHCC/ I 8 25 August 1995

Last update 28 March 1996

LHC-B

LETTER OF INTENT

A Dedicated LHC Collider Beauty Experiment for Precision Measurements of CP-Violation

> University of Liverpool, Liverpool, U.K. S. Biagi, T. Bowcock

CERN/LHCC 95-5 LHCC/ I 8 25 August 1995

Back in the days... (1995)

- "Non-CP-violating physics could be attempted with such an apparatus"
- "of considerable interest in theories with leptoquarks"

Last update 28 March 1996

LHC-B

LETTER OF INTENT

A Dedicated LHC Collider Beauty Experiment for Precision Measurements of CP-Violation

> University of Liverpool, Liverpool, U.K. S. Biagi, T. Bowcock

• "A discussion of non-CP-violating physics which could be attempted with such an apparatus". In addition to the study of rare FCNC decays of Bmesons (see Chapts. 2 and 12), the acceptance

The purely leptonic decays of B_d^0 and B_s^0 mesons are of considerable interest in theories with leptoquarks[24]. In the leptoquark sce-

Back in the days... (1995)

- "Non-CP-violating physics could be attempted with such an apparatus"
- "of considerable interest in theories with leptoquarks"

			1		
2	B-Physics Objectives	11			
	2.1 CKM matrix & unitarity triang	gle 11			
	2.2 $B_s^0 - \overline{B}_s^0$ mixing.	12		LET	TER OF INTENT
	2.3 CP violation in B-decays	13			
	2.4 Desired precision in CP angle	e mea-		A Dedicated LH	C Collider Beauty Experiment
	surements	17		for Procision M	Insuraments of CP. Violation
	2.5 Search for non-CKM physics	17			leasurements of CI - Violation
	2.6 Rare B-decays	17		Tininguaiter	
	2.7 Heavy flavor spectroscopy				of Liverpool, Liverpool, U.K.
-				5. Diagi, 1. Do	wcock
3	Other Physics	22			Parameterization A B
	3.1 Prospects for mixing and dire	ct CP-			$\frac{BR(B \to K\ell^+\ell^-)}{BR(B \to K\ell^+\ell^-)} = 6.0 \cdot 10^{-7} = 2.7 \cdot 10^{-7}$
	violation in D-decays				$\frac{R(B \to Ke^+e^-)}{4\%} \qquad \frac{4\%}{2\%}$
	3.2 Search for lepton-number viola $+$ $+$ $+$ $-$	tion in			$\frac{R(B \to K\mu^+\mu^-)}{R(B \to K\mu^+\mu^-)} = \frac{7\%}{7\%} = \frac{3\%}{3\%}$
	$\tau^+ \rightarrow \mu^+ \mu^+ \mu^-$	24			$\frac{BR(B \to K^* e^+ e^-)}{R(B \to K^* e^+ e^-)} = \frac{3.6 \cdot 10^{-6}}{37\%} = \frac{4.1 \cdot 10^{-6}}{28\%}$
	(Diffraction) • "A C	liscussio	n of non-CP-violating	physics which	$BR(B \to K^* \mu^+ \mu^-) = 2.9 \cdot 10^{-6} = 2.5 \cdot 10^{-6}$
	34 Cosmic ray phenor	11			$R(B \to K^* \mu^+ \mu^-) \qquad 34\% \qquad 29\%$
	ion collisions	a de atte	empted with such an a	pparatus". In	
	3.5 J/ψ and Υ product add	tion to t	the study of rare FCN(decaus of R.	Table 2.2: Rates and branching fractions [19, 20, 21] for the decays $B \rightarrow K^{\ell+\ell^-}$ and $B \rightarrow K^{*\ell+\ell^-}$ with
	sions	/		v uccuyo vy D-	$m_t = 150$ GeV. A and B are two different param-
	12.7 $B_s \rightarrow \mu^+ \mu^- \dots$ mes	ons (see	Chapts. 2 and 12), the	<u>he acceptance</u>	
	12.7.1 Reconstruction Simulation	on 116			
	The	nurely	leptonic decays of	B^0 and B^0	
	Inc	purcij	reptonic decays of	D_d and D_s	
	meson	s are o	t considerable interes	t in theories	
	with	leptoqua	rks[24]. In the le	ptoquark sce-	

In the leptoquark sce-

CERN/LHCC 95-5 LHCC/I8 25 August 1995

Last update 28 March 1996

LHC-B

Back in the days... (1998)

LHCb

CERN LHCC 98-4 LHCC/P4 20 February 1998

Technical Proposal

A Large Hadron Collider Beauty Experiment for Precision Measurements of CP Violation and Rare Decays

> University of Liverpool, Liverpool, U.K. S.Biagi, T.Bowcock, P.Hayman, M.McCubbin, G.Patel

CERN LHCC 98-4 LHCb LHCC/P4 Back in the days... (1998) 20 February 1998 **Technical Proposal** Little mention of rare decays "K*µµ should also be possible" "allow for surpising effects" A Large Hadron Collider Beauty Experiment for **Precision** Measurements of • No mention of semileptonic **CP** Violation and Rare Decays University of Liverpool, Liverpool, U.K. **IV** Physics Performance 141 S.Biagi, T.Bowcock, P.Hayman, M.McCubbin, G.Patel 15 Reconstruction 143 15.1 Simulation program 143 15.3 $B_{4}^{0} \rightarrow \pi^{+}\pi^{-}$ 16 CP Sensitivities 159process, such as $B^0_d \to K^{**}\gamma^5$ and $B^0_s \to \phi\gamma$. Re-16.6 Sensitivities to Δm_s and $\Delta \Gamma_s$ 16.7 Sensitivity to $\gamma - 2\delta\gamma$ construction of $B^0_d \to K^{*0} \mu^+ \mu^-$ should also be pos-16.9 Sensitivity to $\delta\gamma$ sible. The large numbers of reconstructed events expected allow searches to be made for surprising effects in these rare decay modes. Events needed to

Outline

• CC: b→cl⁻v

- R(D^(*))

- FCNC: $b \rightarrow sl^+l^-$
 - $B_s^0 \rightarrow \mu^+ \mu^-$
 - Decay rates
 - Angular analyses
 - Lepton flavour ratios
- Effective couplings
- Prospects

Back in the days: look for 2HDM

• Higgs couples to 3rd generation

LHCb Coll. arXiv:1711.05623

New measurement of $R(D^*)$ vs R(D) !

- Signal
 - $B^0 \rightarrow D^{*+} I^- v$ $\rightarrow (D^{*+} \mu)$ sample
 - B^+ → $D^0 l^- v$ → $(D^0 \mu)$ sample
- Main backgrounds:
 - $B \rightarrow DDX$

Courtesy: P.Hamilton, Impl.Workshop, 19 Oct 2022

New measurement of $R(D^*)$ vs R(D) !

Simultaneous 3D-fit to 8 samples (and in 4 q² bins...)

Courtesy: P.Hamilton, Impl.Workshop, 19 Oct 2022, LHCb-PAPER-2022-039, in preparation

Courtesy: P.Hamilton, Impl.Workshop, 19 Oct 2022 LHCb-PAPER-2022-039, in preparation

New measurement of $B \rightarrow D^{\nu} \mu \nu$ B $\rightarrow D^{\nu} \mu \nu$ B $\rightarrow D^{\nu} \mu \nu$ vs R(D) ! *) $\dot{B} \rightarrow D^0 \dot{D} X$ Fit was checked on specifies amples: 85 GeV2/c4LHC 0.40 < q² < 2.85 GeV²/c⁴LHCb I $| (\Lambda_b \rightarrow D^0 \mu p X) enriched$ $(\eta \rightarrow \pi^+ \pi^- \pi^0)$ enriched Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²) Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²)² $9.35 < q^2 < 12.6 \text{ GeV}^2$ -0.40 < q² < 2.85 GeV²/c⁴LHCb pro $B \rightarrow D^0 \mu \nu$ $B \rightarrow D$ $B \rightarrow D^{*0} \mu \nu$ $B \rightarrow D$ Comb. + Fake $B \rightarrow D^{**} \mu \nu$ $B \rightarrow D^0 D X$ ᠊ᡆᠧᡗᢑᢧᠧᡗᡀᠬᠣ →Dτν ALC - COLOR $B \rightarrow D \tau v$ Template stats Templat E_u (MeV) E. (MeV) E_u (MeV) E_u (MeV 9.35 < q² < 12.6 GeV²/c⁴ LHCb F 2.85 GeV²/c⁴LHCb pr -0.40 < q2 < 2.85 GeV2/c4LHC 6.10 < q2 < 9.35 GeV2/ $(D^* non-\mu)$ enriched $(\phi \rightarrow KK)$ enriched Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass2 (GeV / c2) Missing mass² (GeV / c²) 0.40 x n² x 2.85 GeV²/c¹LHCb prelin 6.10 GeV²/c⁴ LHCb preli →D⁰ u ν $B \rightarrow D$ $B \rightarrow D^{*0} \mu \nu$ $B \rightarrow D^*$ → D^{*+} ս չ $B \rightarrow D^*$ omb. + Fake Comb. + →D̃uν $B \rightarrow D$ • D⁰ D X ┍┰┍┛╟╖╹┶╦┍╼┚╼ _nalla_l →Dτv $B \rightarrow D^{\dagger} \tau \nu$ $B \rightarrow D^*$ E_a (MeV) Template stats E, (MeV) E_u (MeV) E_{μ} (MeV) Template 6.10 GeV²/c⁴ LHCb $9.35 < q^2 < 12.6 \text{ GeV}^2/c^4 \frac{LHO}{3.05}$ eV²/c⁴ LHC $35 < a^2 < 12.6 \text{ GeV}^2/c$ $(D^*\mu + 3\pi)$ enriched (DD WS-K) enriched Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2) Missing mass2 (GeV / c2)2 $6.10 < a^2 < 9.35 \text{ GeV}^2/c^4 \text{ LHCb}$ $9.35 < q^2 < 12.6 \text{ GeV}^2/c^4 \frac{\text{LHCb}}{3.0 \text{c}^3} \text{P}$ 9.35 < q² < 12.6 GeV²/c⁴ LHCb pr ᢩᠳᢙᡀᡘ᠘

Courtesy: P.Hamilton, Impl.Workshop, 19 Oct 2022 LHCb-PAPER-2022-039, in preparation

New measurement of $R(D^*)$ vs R(D) !

• Lots of ingredients in fit:

New measurement of $R(D^*)$ vs R(D) !

• World average 3.3σ to 3.2σ

New measurement of $R(D^*)$ vs R(D) !

World average 3.3σ to 3.2σ

Semileptonic CC $b \rightarrow cl^{-}v$ "Semileptonic" FCNC EWP Penguin $b \rightarrow sl^+l^-$ Rich laboratory:

- 1) Purely leptonic
- 2) Decay rates
- 3) Angular asymmetries
- 4) Ratio of decay rates

$B_s^0 \rightarrow \mu^+ \mu^-$

• Purely leptonic $b \rightarrow sl^+l^-$

+ $B_s^0 \rightarrow e^+e^-$ (LHCb, arXiv:2003.03999) + $B_s^0 \rightarrow T^+T^-$ (LHCb, arXiv:1703.02508)

$$B_s^0 \rightarrow \mu^+ \mu^-$$
 (LHCb)

LHCb Coll. arXiv:2108.09284

Theory:

$$B(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$

 $B(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$
 $\mathcal{B}(B^0 \to \mathcal{B}(B^0 \to \mathcal{B}$

Beneke, Bobeth, Szafron, arXiv:1908.07011

• Relative production of B_s^0 wrt B^0 mesons, f_s/f_d :

LHCb Coll. arXiv:2108.09284

 $\begin{aligned} f_s/f_d (7 \,\text{TeV}) &= 0.2390 \pm 0.0076 \\ f_s/f_d (8 \,\text{TeV}) &= 0.2385 \pm 0.0075 \\ f_s/f_d (13 \,\text{TeV}) &= 0.2539 \pm 0.0079 \end{aligned} \begin{vmatrix} f_s/f_d & (p_{\text{T}}, 7 \,\text{TeV}) &= (0.244 \pm 0.008) + ((-10.3 \pm 2.7) \times 10^{-4}) \cdot p_{\text{T}} \\ f_s/f_d & (p_{\text{T}}, 8 \,\text{TeV}) &= (0.240 \pm 0.008) + ((-3.4 \pm 2.3) \times 10^{-4}) \cdot p_{\text{T}} \\ f_s/f_d & (p_{\text{T}}, 13 \,\text{TeV}) &= (0.263 \pm 0.008) + ((-17.6 \pm 2.1) \times 10^{-4}) \cdot p_{\text{T}} \end{aligned}$

(Integrated, p_{T} [0.5,40] GeV/c, η [2.6,4])

LHCb Coll, arXiv:2103.06810

$$\begin{aligned} \mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mu^{+}\mu^{-}) &= \left[3.83^{+0.38}_{-0.36} \,\, (\mathrm{stat}) \, {}^{+0.19}_{-0.16} \, (\mathrm{syst}) \, {}^{+0.14}_{\mathrm{Summer} \, \overline{20}22} (f_{\mathrm{s}} / f_{\mathrm{u}}) \right] \times 10^{-9} \\ \mathcal{B}(\mathrm{B}^{0} \to \mu^{+}\mu^{-}) &= \left[0.37^{+0.75}_{-0.67} \,\, (\mathrm{stat}) \, {}^{+0.08}_{-0.09} \, (\mathrm{syst}) \right] \times 10^{-10}. \end{aligned}$$

dulyrtes**2022**Kovalskyi (CMS), ICHEP, 9 July 2022, [CMS-PAS-BPH-21-006]

Decay rates

$b \rightarrow s|^+|^-$

Rich laboratory:

- 1) Purely leptonic
- 2) Decay rates
- 3) Angular asymmetries
- 4) Ratio of decay rates

Decay rates

Decay rate with muons in final state consistently low:

Decay rates

• Lots of theoretical developments:

Angular asymmetries

Angular asymmetries: eg. P₅'

• Compilation:

Angular asymmetries

• Interesting to compare angular asymmetries for μ and e

$B^0 \rightarrow K^0 * \mu^+ \mu^-$: more than just P_5'

• Many measurements:

Outline

- CC: b→cl⁻v
 − R(D^(*))
- FCNC: $b \rightarrow s|^+|^-$
 - $B_s^0 \rightarrow \mu^+ \mu^-$
 - Decay rates
 - Angular analyses
 - Lepton flavour ratios
- Effective couplings
- Prospects

• Historical example

• Both are correct, depending on the energy scale you consider

• Historical example

• Analog: Flavour-changing neutral current

- Effective coupling can be of various "kinds"
 - Vector coupling: C₉
 - Axial coupling: C₁₀
 - Left-handed coupling (V-A): C₉-C₁₀
 - Right-handed (to quarks): C_9' , C_{10}' , ...

Analog: <u>Flavour-changing neutral current</u>

• C_7 (photon), C_9 (vector) and C_{10} (axial) couplings hide everywhere:

$$\begin{split} A_{\perp}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} + C_{9}^{efff} \end{pmatrix} &= \begin{pmatrix} C_{10}^{eff} \end{pmatrix} + C_{10}^{efff} \end{pmatrix} \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{t}}{q^{2}} \begin{pmatrix} C_{7}^{eff} \end{pmatrix} + C_{7}^{efff} \end{pmatrix} T_{1}(q^{2})] \\ A_{\parallel}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} - C_{9}^{efff} \end{pmatrix} &= \begin{pmatrix} C_{10}^{eff} \end{pmatrix} - C_{10}^{efff} \end{pmatrix} \frac{A_{1}(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{t}}{q^{2}} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{efff} \end{pmatrix} T_{2}(q^{2})] \\ A_{0}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} - C_{9}^{efff} \end{pmatrix} = \begin{pmatrix} C_{10}^{efff} \end{pmatrix} - C_{10}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{L}^{L2} - A_{\perp}^{L2} \\ A_{\perp}^{L2} + A_{\perp}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{10}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\perp}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\perp}^{L2} + A_{0}^{L2} + L \\ 2m_{t} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} - A_{\parallel}^{L2} \\ M_{1}^{L2} + A_{\perp}^{L2} + A_{0}^{L2} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} + A_{\perp}^{L2} + A_{0}^{L2} \\ M_{1}^{L2} + A_{\perp}^{L2} + A_{0}^{L2} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} + A_{\perp}^{L2} + A_{\perp}^{L2} + A_{\perp}^{L2} + A_{\perp}^{L2} + L \\ M_{1}^{L2} + A_{\perp}^{L2} + A_{\perp}^{L2} + A_{\perp}^{L2} \end{pmatrix} \\ &= \begin{pmatrix} M_{1}^{L2} + A_{\perp}^{L2} + A_{\perp}^{$$

Coherent pattern

Coherent pattern

Model independent fits:

- C_9^{NP} deviates from 0 by >4 σ
- Independent fits by many groups favour:
 - C₉^{NP}=-1 or
 - C₉^{NP}=-C₁₀^{NP}

>All measurements (175) agree with a single (simple?) shift...

	all rare B decays		
Wilson coefficient	best fit	pull	
$C_9^{bs\mu\mu}$	$-0.82^{+0.14}_{-0.14}$	6.2σ	
$C_{10}^{bs\mu\mu}$	$+0.56^{+0.12}_{-0.12}$	4.9σ	
$C_9^{\prime bs\mu\mu}$	$-0.09^{+0.13}_{-0.13}$	0.7σ	
$C_{10}^{\prime bs\mu\mu}$	$+0.01^{+0.10}_{-0.09}$	0.1σ	
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	$-0.06^{+0.11}_{-0.11}$	0.5σ	
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.43^{+0.07}_{-0.07}$	6.2σ	

h

Similar improvement of fit for both scenario's

NB: p-value SM hypothesis ~0.5%

S

 μ^+

Coherent pattern

• Charm loop effects could also cause a shift in C₉

 $\begin{array}{c} C_9 \\ b \to s \mu \mu \end{array}$

From: Martino Borsato, Flavour Anomaly Workshop, 20 Oct 2021, https://indico.cern.ch/event/1055780/

Ratio of decay rates

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(\mu^{+} \mu^{-}))} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(e^{+} e^{-}))}$$

- Theoretically "clean"
- Experimentally
 - Signal yields
 - Backgrounds
 - Electron reconstruction
 - Efficiencies cancel in ratio
 - Belle II: good electron reconstruction
 - LHCb: large B sample

 $r_{J/\psi}$

- Test efficiencies are understood in all kinematic regions by checking $r_{J/\psi}$ is flat
- Flatness of $r_{J/\psi}$ 2D plots gives confidence that efficiencies are understood

LHCb Coll, arXiv:2103.11769

Analyses – where are we?

Analysis	Run 1 2011-2012	Run 2015-2016	2 2017-2018
$B_{(s)} \to \!\! \mu \mu$	✓	✓	v
$B^0 \rightarrow K^{0*} \mu \mu$ (ang)	\checkmark	\checkmark	
B+ _{/(s)} →K*+/φμμ (ang)	V	V	~
R _K	v	v	v
$R_{K^*}(R_X)$	v		
R _{pK}	v	v	
R _{KS,RK*+}	~	~	~
$R_{\phi, K \pi \pi, \pi, \Lambda}$			
R(D*)	v		
R(D)	v		
$R(\Lambda_c)$	v	v	v
+ many others			

- We are working on a unified analysis of $B^+ \rightarrow K^+ l^+ l^-$ and $B^0 \rightarrow K^{*0} l^+ l^-$ decay ratios with electron and muon final states
 - Final Run-1 and 2 results on these key $b \rightarrow sll$ LFNU observables
 - Important checks in the absence of competitive results from other experiments
- Will lead to a deeper understanding of our LFNU measurements and will be reflected in our final results

Outline

- CC: b→cl⁻v
 − R(D^(*))
- FCNC: $b \rightarrow s|^+|^-$
 - $B_s^0 \rightarrow \mu^+ \mu^-$
 - Decay rates
 - Angular analyses
 - Lepton flavour ratios
- Effective couplings
- Prospects
 - Belle-II
 - LHCb Upgrade 1
 - LHCb Upgrade 2

Future Plans

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	÷
			Run II	I				Rui	ו IV					Ru	n V
LS2						LS3						LS4			
LHCb 4 UPGRA	IO MHZ	L	= 2 x 10	<u>)</u> 33	LHCb Consol	idate		L	$= 2 x 10^{-1}$)33		LHCb UPGRA	ADE II	L=1-2 300	2x10 ³⁴ fb ⁻¹
ATLAS Phase I	Upgr	L	$= 2 \times 10$)34	ATLAS Phase	II UPG	RADE	L	$= 5 \times 10^{-1}$	C)34				$\begin{array}{l} \textbf{HL-L} \\ L = 5 \end{array}$	HC x10 ³⁴
CMS Phase I	Upgr		300 fb ⁻¹		CMS Phase	II UPG	RADE							3000	0 fb ⁻¹
Belle I	I	L=3	$x \ 10^{35}$			7 ab-1					L = 6 :	$x \ 10^{35}$	50 0	<i>ab-1</i>	

LHC schedule:

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

LHCb: VELO

LHCb: Tracker

LHCb: Ring Imaging Cherenkov

LHCb: Calorimeter & Muon detector

New CALO frontend and control boards

MUON Station 2 Hit map during machine test Oct 2021

First data at 13.6 TeV

Future Plans

Future Plans

P. Collins, Fri 15:27

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-LHCC-2021-012 LHCb TDR 23 24 February 2022

LHCb-TDR-023

Framework TDR for the LHCb Upgrade II Opportunities in flavour physics, and beyond, in the HL-LHC era

The LHCb collaboration

Abstract

This document is the Framework Technical Design Report for the Upgrade II of the LHCb experiment, which is proposed for the long shutdown 4 of the LHC. The upgraded detector will operate at a maximum luminosity of $1.5 \times 10^{34}\,{\rm cm}^{-2}\,{\rm s}^{-1}$, with the aim of integrating $\sim 300\,{\rm fb}^{-1}$ through the lifetime of the high-luminosity LHC (HL-LHC). The collected data will allow to fully exploit the flavour-physics opportunities of the HL-LHC, probing a wide range of physics observables with unprecedented accuracy. In particular, the new physics mass scale probed, for fixed couplings, will almost double as compared with the pre-HL-LHC era.

The accomplishment of this ambitious programme will require that the current detector performance is maintained at the maximum expected pile-up of \sim 40, and even improved in certain specific domains. To meet this challenge, it is foreseen to replace all of the existing spectrometer components to increase the granularity, reduce the amount of material in the detector and to exploit the use of new technologies including precision timing of the order of a few tens of picoseconds. The design options for each subdetector are discussed, and the ongoing efforts to face the associated technology challenges. For the first time, elements of the environmental impact of the project are considered. Finally, details are given about the project schedule, the cost envelope and the participating institutes.

Approved by LHCC, 2022

Planning for Upgrade II: Tracking

Planning for Upgrade II: PID detectors

Summary

- Precision measurements to scrutinize the Standard Model
- Precision measurements reach very high mass scales
- Precision measurements are statistically limited
- Lots of opportunities to contribute to R&D

Planning for Upgrade II: Tracking

Planning for Upgrade II: PID detectors

Planning for Upgrade II: Testbeam

- Activities for RICH, VELO, ECAL, MUON
- Lots of opportunities for R&D in coming decade!

$$|P| = 1, |S| = 0, \varphi_P = 0$$
 $\varphi_S = \pi/2$

Historical record of indirect discoveries

GIM mechanism in $K^0 \rightarrow \mu \mu$	CP violation, $K_L^0 \rightarrow \Pi \Pi$	B ⁰	$\leftrightarrow \overline{B^0}$ mixing
Weak Interactions with Lepton-Hadron Symmetry* S. L. GLASHOW, J. LIJOPOULOS, AND L. MALANI [†] Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970) We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction specified to a complete Yane-Mills theory is discussed.	27 JULY 1964 EVIDENCE FOR THE 2π DECAY OF THE K_2^{0} MESON* [†] J. H. Christenson, J. W. Cronin, [‡] V. L. Fitch, [‡] and R. Turlay [§] Princeton University, Princeton, New Jersey (Received 10 July 1964)	DESY 87-029 April 1987 OB:	SERVATION OF B ⁰ - B ⁰ MIXING The ARGUS Collaboration
splitting, beginning at order $G(G\Lambda^2)$, as well as con- tributions to such unobserved decay modes as $K_2 \rightarrow \mu^+ + \mu^-$, $K^+ \rightarrow \pi^+ + l + \bar{l}$, etc., involving neutral lepton We wish to propose a simple model in which the divergences are properly ordered. Our model is founded	This Letter reports the results of experimental studies designed to search for the 2π decay of the K_2^0 meson. Several previous experiments have	In summary, the combined evide and B ⁰ meson-lepton events on the been observed and is substantial. Parameters	nce of the investigation of B^0 meson pairs, lepton pairs Y(4S) leads to the conclusion that $B^0 \cdot \overline{B}^0$ mixing has Comments
in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi- new quantum number \mathfrak{C} for charm.	Progress of Theoretical Physics, Vol. 49, No. 2, February 1973 CP-Violation in the Renormalizable Theory of Weak Interaction Makoto KOBAYASHI and Toshihide MASKAWA Department of Physics, Kyoto University, Kyoto (Received September 1, 1972) doublet with the same charge assignment. This is because all phases of elements of a 3×3 unitary matrix cannot be absorbed into the phase convention of six fields. This possibility of CP-violation will be discussed later on.	$\begin{split} r &> 0.09 \; 90\% C L \\ \mathbf{x} &> 0.44 \\ \mathbf{B}^{\frac{1}{2}} \mathbf{f}_{\mathbf{B}} \approx \mathbf{f}_{\mathbf{x}} < 160 \; \mathrm{MeV} \\ \mathbf{m}_{\mathbf{b}} &< 5 \mathrm{GeV}/c^2 \\ \tau_{\mathbf{b}} < 1.4 \cdot 10^{-12} \mathrm{s} \\ \mathbf{V}_{\mathbf{td}} < 0.018 \\ \eta_{\mathrm{OCD}} < 0.86 \\ \mathbf{m}_{\mathbf{t}} > 50 \mathrm{GeV}/c^2 \end{split}$	This experiment This experiment B meson (≈ pion) decay constant b-quark mass B meson lifetime Kobayashi-Maskawa matrix element QCD correction factor [17] t quark mass
Glashow, Iliopoulos, Maiani, Phys.Rev. D2 (1970) 1285	Christenson, Cronin, Fitch, Turlay, Phys.Rev.Lett. 13 (1964) 138 Kobayashi, Maskawa, Prog.Theor. Phys. 49 (1973) 652	ARGUS Coll. Phys.Lett.B192 (19	87) 245

"Discovery" of charm

"Discovery" of beauty

"Discovery" of top

Anomalies

• What is the overall picture? Combination statistically not simple

Model building

• Most popular models: Z' or Leptoquark

d

Particle		Indirect		Direct					
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956			
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983			
С	<i>K</i> ⁰→μμ	GIM	1970	J/ψ	Richter, Ting	1974			
b	СРV <i>К⁰→пп</i>	CKM, 3rd gen	1964/72	Y	Ledermann	1977			
Z	v-NC	Gargamelle	1973	Z→e+e-	UA1	1983			
t	B mixing	ARGUS	1987	t→Wb	D0, CDF	1995			
Н	e ⁺ e ⁻ EW fit, LEP		2000	<i>Η</i> →4μ/γγ	CMS, ATLAS	2012			
?	What'	s next ?	?			?			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ W^{-} \\ \end{array} \\ \begin{array}{c} \end{array} \\ e^{-} \\ \overline{\nu}_{e} \\ \end{array} \\ \begin{array}{c} \end{array} \\ K^{0} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \mu^{-} \\ \end{array} \\ \begin{array}{c} \end{array} \\ p \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \left(\\ \end{array} \\ \end{array} \left(\\ \end{array} \\ \end{array} \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \\ \end{array} \\ \end{array} \left(\\ \end{array} \left(\\ \end{array} \\ \end{array} \left(\\ \end{array} \\ \end{array} \left(

