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Outline

⇝⇝⇝ Measuring the hadronic leading order contribution to aµ in the space-like region

⇝⇝⇝ QED radiative corrections to muon-electron scattering (and their Monte Carlo implementation)

⇝⇝⇝ Muon-electron scattering at NLO

⇝⇝⇝ Muon-electron scattering at NNLO

⇝⇝⇝ NNLO virtual and real leptonic corrections to muon-electron scattering

⇝⇝⇝ Flash on µe → µeπ0

⇝⇝⇝ Conclusions and outlook

Workshop on Muon Precision Physics MUonE Theory 2 / 26



Theory work

⇝⇝⇝ Carloni Calame et al., PLB 746 (2015), 325

⇝⇝⇝ Mastrolia et al., JHEP 11 (2017) 198

⇝⇝⇝ Di Vita et al., JHEP 09 (2018) 016

⇝⇝⇝ Alacevich et al., JHEP 02 (2019) 155

⇝⇝⇝ Fael and Passera, PRL 122 (2019) 19, 192001

⇝⇝⇝ Fael, JHEP 02 (2019) 027

⇝⇝⇝ Carloni Calame et al., JHEP 11 (2020) 028

⇝⇝⇝ Banerjee et al., SciPost Phys. 9 (2020), 027

⇝⇝⇝ Banerjee et al., EPJC 80 (2020) 6, 591

⇝⇝⇝ Budassi et al., JHEP 11 (2021) 098

⇝⇝⇝ Balzani et al., PLB 834 (2022) 137462

⇝⇝⇝ Bonciani et al., PRL 128 (2022) 2, 022002

⇝⇝⇝ Budassi et al., PLB 829 (2022) 137138

7→ A lively theory community is active to provide

state-of-the-art calculations to match the required

accuracy for meaningful data analysis

7→ Independent numerical codes (Monte Carlo
generators and/or integrators) are developed and
cross-checked to validate high-precision
calculations. Chiefly

✓ Mesmer in Pavia
github.com/cm-cc/mesmer

✓ McMule at PSI/IPPP
gitlab.com/mule-tools/mcmule
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Standard approach to aHLO
µ

; In the following, focus on aHLO
µ , which contributes (with aHLbL

µ ) to the SM uncertainty

• Using dispersion relations and the Optical Theorem

aHLO
µ =

1

4π3

∫ ∞

4m2
π

ds K(s) σ0
e+e−→had(s) =

(αmµ

3π

)2
∫ ∞

4m2
π

ds
K(s)Rhad(s)

s2
=

=
(αmµ

3π

)2
[∫ E2

cut

4m2
π

ds
K(s)Rhad

data(s)

s2
+

∫ ∞

E2
cut

ds
K(s)Rhad

pQCD(s)

s2

]

K(s) =

∫ 1

0

dx
x2(1− x)

x2 + (1− x) s
m2

µ

∼ 1

s
Rhad(s) =

σ0
e+e−→had(s)

4
3
πα2/s
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Master formula

• Alternatively (exchanging s and x integrations in aHLO
µ )

aHLO
µ =

α

π

∫ 1

0

dx (1− x) ∆αhad[t(x)]

t(x) =
x2m2

µ

x− 1
< 0

e.g. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

Hadronst

⇝⇝⇝ The hadronic VP correction to the running of α enters

⇝⇝⇝ Essentially the same formula used in lattice QCD calculation of aHLO
µ

⋆ ∆αhad(t) (and aHLO
µ ) can be directly measured in a (single) experiment involving

a space-like scattering process
Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

⋆ Still a data-driven evaluation of aHLO
µ , but with space-like data

• By modifying the kernel function α
π (1 − x), also aHNLO

µ and aHNNLO
µ can be provided!

Balzani, Laporta, Passera, PLB 834 (2022) 137462
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From time-like to space-like evaluation of aHLO
µ

Time-like 7→ Space-like
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∆
α
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( x
2
m

2 µ

x
−
1

)
×

1
04

x

Smooth function

7→ Time-like: combination of many experimental data sets, control of RCs better than O(1%) on hadronic

channels required

7→ Space-like: in principle, one single experiment, it’s a one-loop effect, very high accuracy needed
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MUonE

Abbiendi et al., EPJC 77 (2017) 3, 139

Abbiendi et al., Letter of Intent: the MUonE project, CERN-SPSC-2019-026, SPSC-I-252 (2019)

⇝⇝⇝ Scattering µ’s on e’s in a low Z target looks like an ideal process (fixed target experiment)

⇝⇝⇝ It is a pure t-channel process at tree level

⇝⇝⇝ The M2 muon beam (Eµ ≃ 160 GeV) is available at CERN

⇝⇝⇝
√
s ≃ 0.4 GeV and −0.143 < t < 0 GeV2

⇝⇝⇝ We can cover 87% of the aHLO
µ space-like integral (and extrapolate to x → 1)

⇝⇝⇝ With ∼ 3 years of data taking, a statistical accuracy of 0.3% on aHLO
µ can be achieved

1

2

δσ

σ
≃ δα

α
≃ δ∆αhad

∆αhad is a 0.1% effect in this region → to measure it at 1%, σ must be controlled at the 10−5 level
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What we want to measure
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A first step, radiative corrections at NLO in QED JHEP 02 (2019) 155

• The µe cross section and distributions must be known as precisely as possible
7→ radiative corrections (RCs) are mandatory and must be implemented into a MC event generator for data analysis

⋆ First step are QED O(α) (i.e. QED NLO, next-to-leading order) RCs

The NLO cross section is split into two contributions,
σNLO = σ2→2 + σ2→3 = σµe→µe + σµe→µeγ

7→ IR singularities are regularized with a vanishingly small photon mass λ

7→ [2 → 2]/[2 → 3] phase space slicing at an arbitrarily small γ-energy cutoff ωs

• µe → µe

σ2→2 = σLO + σvirtual
NLO =

1

F

∫
dΦ2(|ALO|2 + 2ℜ[A∗

LO ×Avirtual
NLO (λ)])

• µe → µeγ
σ2→3 =

1

F

∫
ω>λ

dΦ3|A1γ
NLO|2 =

1

F

(∫
λ<ω<ωs

dΦ3|A1γ
NLO|2 +

∫
ω>ωs

dΦ3|A1γ
NLO|2

)
= ∆s(λ,ωs)

∫
dσLO +

1

F

∫
ω>ωs

dΦ3|A1γ
NLO|2

• the integration over the 2/3-particles phase space is performed with MC techniques and fully-exclusive events are
generated
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NLO diagrams JHEP 02 (2019) 155

+
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• interference of LO µe → µe amplitude with
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Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

calculated exactly• | NLO virtual diagrams |2

• interference of LO µe → µeγ amplitude with

+ many others

• interference of LO µe → µe amplitude with

+ many others

2-loop QED vertex form factors borrowed from Mastrolia and Remiddi, NPB 664 (2003) 341
Workshop on Muon Precision Physics MUonE Theory 11 / 26



Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

approximated à la YFS• interference of LO µe → µe amplitude with

+ many others

⇝⇝⇝ NNLO double-virtual amplitudes where at least 2 photons connect the e and µ lines are approximated

according to the Yennie-Frautschi-Suura (’61) formalism to catch the infra-red divergent structure

Ãα2

= Aα2

e +Aα2

µ +Aα2

eµ, 1L×1L︸ ︷︷ ︸
exact

+
1

2
Y 2
eµT + Yeµ (Ye + Yµ) T + (Ye + Yµ)Aα1,R

eµ + YeµAα1,R

︸ ︷︷ ︸
YFS approximated

• going beyond this requires the full two-loop virtual amplitudes
R. Bonciani et al., PRL 128 (2022) 2
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Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

calculated exactly• squared absolute value of

+ many others

⇝⇝⇝ also at NNLO we use a vanishingly small photon mass λ and the “slicing method” to deal with IR

divergences

⇝⇝⇝ phase space integration and event generation is again performed with MC techniques allowing for fully

exclusive event generation
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NNLO results JHEP 11 (2020) 028

• Showing
∆i

NNLO ≡ 100× dσi
NNLO − dσi

NLO

dσLO

⇝⇝⇝ exact NNLO radiation from electron or muon leg, with or without acoplanarity cut
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NNLO results JHEP 11 (2020) 028

⇝⇝⇝ full NNLO1 radiation for incoming µ+ or µ−, with or without acoplanarity cut
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⇝⇝⇝ we estimate the subset of amplitudes in YFS approximation to miss terms of order(α
π

)2

ln2 (
m2

µ/m
2
e

)
≃ 5 × 10−4

1of course with “double boxes” in YFS approximation
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Exact NNLO photonic corrections

• R. Bonciani et al. in PRL 128 (2022) 2 calculated the complete two-loop photonic corrections to

ff̄ → FF̄ , with mf = 0. It can be used for µ±e− → µ±e− via crossing symmetry
• The massless amplitude needs to go through an elegant and complex procedure known as

massification to recover collinear divergencies in terms of log(Q2/m2
e) Engel et al., JHEP 02 (2019) 118

⇝⇝⇝ Difference between YFS-approximated and exact NNLO (photonic) K factor (preliminary!)
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[
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π log

(
m2
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e

)]2

PRELIMINARY!

• the evaluation of NNLO “double-boxes” is very CPU expensive, > 1 s/event (on a sigle core)
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Virtual leptonic pairs (vacuum polarization insertions) JHEP 11 (2021) 098

• any lepton (and hadron) in the VP blobs
• interfered with µe → µe or µe → µeγ amplitudes

(a) (b) (a)

+ · · ·

(c)

+ · · ·

• interfered with µe → µe amplitude

(a)
(b)

+ · · ·

Here the 2-loop integral is evaluated with dispersion relation techniques
see also Fael & Passera, PRL 122 (2019) 19

gµν
q2 + iϵ

→ gµν
α

3π

∫ ∞

4m2
ℓ

dz

z

Rℓ(z)

q2 − z + iϵ
= gµν

α

3π

∫ ∞

4m2
ℓ

dz

z

1

q2 − z + iϵ

(
1 +

4m2
ℓ

2z

)√
1−

4m2
ℓ

z
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Virtual pair effects JHEP 11 (2021) 098

• Showing NNLO differential K-factors ×104

KNNLO ≡ dσα2, virtual pairs
i

dσLO
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Virtual pair effects JHEP 11 (2021) 098
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Real pair emissions JHEP 11 (2021) 098

• they also contribute at NNLO

• squared absolute vaule of

(b) (c) (e) (f)

+ · · ·

• the emission of an extra electron pair µe → µe e+e− is potentially a dramatically large (reducible)

background, because of the presence of “peripheral” diagrams

⇝⇝⇝ A set of experimental cuts is needed to get rid of it.
In addition to basic cuts (exactly one muon-like and one electron-like, with E ≥ 1 GeV, particle in the
detector), we consider

1. θµ-like, θe-like ≥ θc = 0.2 mrad

2. acoplanarity ≤ 3.5 mrad

3. geometric distance from the elastic curve in the [θµ, θe] plane < 0.2 mrad
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Real e+e− pairs JHEP 11 (2021) 098

⇝⇝⇝ only 0.007% of µe → µe e+e− events survives the combination of the three cuts
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Real e+e− pairs (only basic cuts) JHEP 11 (2021) 098
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Real e+e− pairs (applying extra cuts) JHEP 11 (2021) 098
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⇝⇝⇝ µe → µe µ+µ− is always tiny, because of tiny available phase space
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π0 production PLB 829 (2022) 137138

p2

p1

p4

p3

p5

• We studied also the process µe → µeπ0 with π0 → γγ as possible background, using a

phenomenological model for the γ⋆γ⋆π0 effective vertex
Czyż, Kisza, Tracz, PRD 97 (1) (2018) 016006
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⇝⇝⇝ not an issue in the signal region

⇝⇝⇝ perhaps to be considered for NP searches in phase space region outside the signal one
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Conclusions and outlook

⇝⇝⇝ A lively theory community is collaborating to provide MUonE experiment with high-precision calculations

for meaningful data analysis

⇝⇝⇝ For instance, the Mesmer MC generator includes

⇝⇝⇝ exact NLO corrections

⇝⇝⇝ almost exact NNLO photonic corrections

⇝⇝⇝ exact NNLO virtual leptonic (and hadronic) corrections

⇝⇝⇝ µe → µe ℓ+ℓ− (ℓ = µ, e) and µe → µe π0 (with π0 → γγ), which also contribute at NNLO

⇝⇝⇝ Many cross checks/tuned comparisons have been (and are being) carried out among independent

calculations

✓ All successful!

⇝⇝⇝ Wish-list for the (next) future

↪→ include complete QED NNLO corrections in Mesmer

↪→ implement resummation of higher-order QED corrections, matched to NNLO exact contributions
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Virtual leptonic (and hadronic NNLO) vertex corrections
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Virtual leptonic (and hadronic) NNLO VP corrections
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