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~» Measuring the hadronic leading order contribution to a,, in the space-like region

~~ QED radiative corrections to muon-electron scattering (and their Monte Carlo implementation)
~~ Muon-electron scattering at NLO
~~» Muon-electron scattering at NNLO
~~ NNLO virtual and real leptonic corrections to muon-electron scattering
~+ Flash on pe — per®

~+ GConclusions and outlook
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Theory work

~» Carloni Calame et al., PLB 746 (2015), 325

~ Mastrolia et al., JHEP 11 (2017) 198 A lively theory community is active to provide

~ DiVitaetal., JHEP 09 (2018) 016 state-of-the-art calculations to match the required
~ Alacevich et al., JHEP 02 (2019) 155 accuracy for meaningful data analysis

~+ Fael and Passera, PRL 122 (2019) 19, 192001 s+ Independent numerical codes (Monte Carlo

~ Fael, JHEP 02 (2019) 027 generators and/or integrators) are developed and
~» Carloni Calame et al., JHEP 11 (2020) 028 cross-checked to validate high-precision

) . calculations. Chiefly
~ Banerjee et al., SciPost Phys. 9 (2020), 027

- Banerjee et al., EPJC 80 (2020) 6, 591 v Mesmer in Pavia

- Budassi et al., JHEP 11 (2021) 098 github.com/em-ce/mesmer
~ Balzani et al., PLB 834 (2022) 137462 v/ McMule at PSI/IPPP

~ Bonciani et al., PRL 128 (2022) 2, 022002 gitlab.com/mule-tools/mcmule

~» Budassi et al., PLB 829 (2022) 137138
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~+ Fael and Passera, PRL 122 (2019) 19, 192001 s Independent numerical codes (Monte Carlo

~ Fael, JHEP 02 (2019) 027 generators and/or integrators) are developed and
~+ Carloni Calame et al., JHEP 11 (2020) 028 cross-checked to validate high-precision

) . calculations. Chiefly
~» Banerjee et al., SciPost Phys. 9 (2020), 027

~ Banerjee et al., EPJC 80 (2020) 6, 591 v Mesmer in Pavia

~» Budassi et al., JHEP 11 (2021) 098 github.com/cm-ce/mesmer
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Standard approach to a}i-©

LO HLbL)

~ In the following, focus on a/“°, which contributes (with a

Hadrons

to the SM uncertainty

5

e Using dispersion relations and the Optical Theorem
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Master formula

* Alternatively (exchanging s and z integrations in a!1L©)

1

e g/ dz (1 —x) Aanad[t(z)]
71_2 02 t Hadrons
z°m

t(l’) = o /{' <0

e.g. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

~~» The hadronic VP correction to the running of « enters

~~ Essentially the same formula used in lattice QCD calculation of a};“©

* Aanad(t) (@and a;i“°) can be directly measured in a (single) experiment involving
a space-like scattering process

Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325
x Still a data-driven evaluation of o[, but with space-like data

HNLO and aHNNLO

¢ By modifying the kernel function £ (1 — z), also a}; "

can be provided!
Balzani, Laporta, Passera, PLB 834 (2022) 137462
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From time-like to space-like evaluation of

Time-like —> Space-like

100

10

mean
oCrystal Ball

ATMD2SND APLUTO
+HEA wBEsi)

o

f XMp-1
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|CELLO, MARK J
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E (GeV) T

Smooth function
— Time-like: combination of many experimental data sets, control of RCs better than O(1%) on hadronic
channels required
— Space-like: in principle, one single experiment, it's a one-loop effect, very high accuracy needed
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Abbiendi et al., EPJC 77 (2017) 3, 139
Abbiendi et al., Letter of Intent: the MUonE project, CERN-SPSC-2019-026, SPSC-I-252 (2019)

~~ Scattering u’s on ¢’s in a low Z target looks like an ideal process (fixed target experiment)
~~ It is a pure t-channel process at tree level
~» The M2 muon beam (E, ~ 160 GeV) is available at CERN

~ y/s~0.4GeVand —0.143 < t < 0 GeV?

HLO

~» We can cover 87% of the a;,

space-like integral (and extrapolate to x — 1)

~ With ~ 3 years of data taking, a statistical accuracy of 0.3% on a};-° can be achieved

14 o
7£:£:6Aahad
20 «

Aanag is a 0.1% effect in this region — to measure it at 1%, o must be controlled at the 10> level
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What we want to measure
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, radiative corrections at NLO in QED JHEP 02 (

® The pe cross section and distributions must be known as precisely as possible
— radiative corrections (RCs) are mandatory and must be implemented into a MC event generator for data analysis

* First step are QED O(«) (i.e. QED NLO, next-to-leading order) RCs

The NLO cross section is split into two contributions,
ONLO = 0252 + 0233 = Ope—spe + Ope—spey

+— IR singularities are regularized with a vanishingly small photon mass A
— [2 — 2]/[2 — 3] phase space slicing at an arbitrarily small v-energy cutoff ws
® e — ue

oasn = o0 + oyipmal — L / d®s(|ALol? + 2R[AL o x AFEa ()

® pe — pey 1

1 1
0243 = f/>>\ dq)3“A]\’7YLo‘2 = F <A< § d¢3|ANLO|2 +/> dq>3|ANLO )
w w<wg w>wg

1
= A ws) /daLo+—/ dds| AL, |2
F w>wg

® the integration over the 2/3-particles phase space is performed with MC techniques and fully-exclusive events are
generated
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NLO diagrams JHEP 02 (2019) 155

¢ interference of LO pe — pe amplitude with

" " I I

leptons
+top

hadrons

+ counterterms

I P I P
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Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

® | NLO virtual diagrams | calculated exactly
e interference of LO pe — pey amplitude with

e interference of LO pe — pe amplitude with

% X + many others

2-loop QED vertex form factors borrowed from Mastrolia and Remiddi, NPB 664 (2003) 341
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Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

e interference of LO e — ue amplitude with approximated a la YFS

AN A s

+ many others

~~ NNLO double-virtual amplitudes where at least 2 photons connect the e and . lines are approximated
according to the Yennie-Frautschi-Suura ('61) formalism to catch the infra-red divergent structure

~ 1
A = AL+ AT+ A 1+ SYAT A+ Yeu (Ve + V) T 4 (Ye + V)AL R + Yo AY R

exact

YFS approximated

® going beyond this requires the full two-loop virtual amplitudes
R. Bongiani et al., PRL 128 (2022) 2
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Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

® squared absolute value of calculated exactly

+ many others

~~ also at NNLO we use a vanishingly small photon mass A and the “slicing method” to deal with IR
divergences

~+ phase space integration and event generation is again performed with MC techniques allowing for fully
exclusive event generation
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NNLO results JHEP 11 (2020) 028

® Showing ) T
Alnio = 100 x do\no — doNio

0LO

~~ exact NNLO radiation from electron or muon leg, with or without acoplanarity cut
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NNLO results JHEP 11 (2020) 028

~ full NNLO' radiation for incoming p.* or 1=, with or without acoplanarity cut
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9, (mrad) 9, (mrad) tee (GeV?) fee (GeV?)

~~ we estimate the subset of amplitudes in YFS approximation to miss terms of order

(%)2 In? (m2/m?2) ~ 5 x 107*

"of course with “double boxes” in YFS approximation
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Exact NNLO photonic corrections

® R. Bonciani et al. in PRL 128 (2022) 2 calculated the complete two-loop photonic corrections to
ff = FF,withm; = 0. It can be used for u*e~ — u*e~ via crossing symmetry
® The massless amplitude needs to go through an elegant and complex procedure known as

massification to recover collinear divergencies in terms of log(Q?/m?) Engel et al,, JHEP 02 (2019) 118

~~ Difference between YFS-approximated and exact NNLO (photonic) K factor (preliminary!)

0.0008 T
4~ McMule —

0.0006 ff
1~ Mesmer —

0.0004 i+ Mesmer — 7|
0.0002 £ [2log (m2/mA — 4

0
~0.0002 - H
32-0.0004 - h H
~0.0006 - H
~0.0008 - L[—

—0.001 L L L L L L
—0.14 —0.12 —0.1 —0.08 —0.06 —0.04 —0.02 0

ta (GeV?)
® the evaluation of NNLO “double-boxes” is very CPU expensive, > 1 s/event (on a sigle core)

SYFS a?
int

K

2
exact a? _

K
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Virtual leptonic pairs (vacuum polarization insertions) JHEP 11 (2021) 098

® any lepton (and hadron) in the VP blobs
® interfered with ue — pe or e — pey amplitudes

B A +

(b) (e)
° interfered with e — pe amplitude

() (b) Q ;/

Here the 2-loop integral is evaluated with dispersion relation techniques
see also Fael & Passera, PRL 122 (2019) 19

q2+ie ”37r 4zzq z+ze ”37r zzq ¢ — %+ ie 2z z
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Virtual pair effects JHEP 11

e Showing NNLO differential K-factors x10*

dO'aZ , virtual pairs
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JHEP 11 (2

Virtual pair effects

r
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Real pair emissions JHEP 11 (2021) 098

e they also contribute at NNLO
® squared absolute vaule of

®) © 77<: © ®

* the emission of an extra electron pair ue — pe e*e™ is potentially a dramatically large (reducible)
background, because of the presence of “peripheral” diagrams

~ A set of experimental cuts is needed to get rid of it.
In addition to basic cuts (exactly one muon-like and one electron-like, with £ > 1 GeV, particle in the
detector), we consider

1. Opike; Oelive > 0 = 0.2 mrad
2. acoplanarity < 3.5 mrad
3. geometric distance from the elastic curve in the [6,,, 6] plane < 0.2 mrad
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Real ete™ pairs JHEP 11

elastic curve
prem = peTete” basic acceptance cuts o
basic acceptance cuts + [0, 6, > 0.2 mrad]  x
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=4 basic acceptance cuts + [6,, 6. > 0.2 mrad] + [§ < 0.2 mrad]  x
ER g
<2 1
<&

1 B 4

oy
donteniaine et

0
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2 ]
s i
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~+ only 0.007% of ue — ue ete™ events survives the combination of the three cuts
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Real eTe™ pairs (only basic cuts) JHEP 11 (2
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Real eTe™ pairs (applying extra cuts)

0.2
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on Precision Physics
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70 production

PLB 829 (2022) 137138

* We studied also the process pe — pen® with 7° — ~v as possible background, using a

phenomenological model for the v*~*7° effective vertex
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~ not an issue in the signal region

P2

P1

Czyz, Kisza, Tracz, PRD 97 (1) (2018) 016006

1 GeV p—
0.2 GeV ——

0 s s . . . .
-0.14 —-0.12 -0.1 -0.08 —0.06 —0.04 —0.02 0

tee (GeV?)

~ perhaps to be considered for NP searches in phase space region outside the signal one
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Conclusions and outlook

~ A lively theory community is collaborating to provide MUonE experiment with high-precision calculations
for meaningful data analysis

~~» For instance, the Mesmer MC generator includes
~~ exact NLO corrections
~~ almost exact NNLO photonic corrections
~~ exact NNLO virtual leptonic (and hadronic) corrections
~ e — pe 0707 (0= p,e) and pe — pe 0 (with 7© — ~v+~), which also contribute at NNLO
~» Many cross checks/tuned comparisons have been (and are being) carried out among independent
calculations
v All successful!

~» Wish-list for the (next) future
— include complete QED NNLO corrections in Mesmer

— implement resummation of higher-order QED corrections, matched to NNLO exact contributions
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MUonE Topical Workshop at the Mainz Institute for Theoretical Physics

The Evaluation of the Leading Hadronic
MITP Contribution to the Muon g-2:
TOPICAL Toward the MUonE Experiment

WORKSHOP 14 — 18 November 2022

@ https:/findico.mitp.uni-mainz.de/event/248

Mainz Institute I for

Theoretical Physics
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Virtual leptonic (and hadronic NNLO) vertex corrections

' W r ‘
—-0.5 b —0.5
-1F -1r n e line DR
ob on e line Bonciani et al.  x
o L5 o L5 e blob on g line DR — 1
z z e blob on p line analytic =
Z > blok > line DR z
= -2 e-) ob on t lf]e 5 o 10 x g blob on e line DR B
X e blob on e line Bonciani et al.  x X . K
- . blol line DR — - 10 x g blob on e line analytic =
= —2.5 ¢ b 01-1 puime . 1 = —2.5 10 x g blob on g line DR — B
e blob on x line analytic . Lo
) 10 x g blob on g line Bonciani et al,
10 x g blob on e line DR A
-3 . . - -3 10 x hadronic blob o, ne — il
10 x g blob on e line analytic
10 x g blob on y line DR —
-3.5 i iani et 4 1 -3.5 q
10 x p blob on g line Bonciani et al.  x
10 x hadronic blob on e line —
4 | | | 1 1 | 4 L L L L L L L
0 5 10 15 20 25 30 —-0.14 —0.12 —0.1 —0.08 —0.06 —0.04 —0.02 0
0. (mrad) tee (GeV?)

p on Muon Precision Physics




Virtual leptonic (and hadronic) NNLO VP corrections
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