Software for MUonE

Marcin Kucharczyk

IFJ PAN Kraków

Workshop on Muon Precision Physics

Liverpool, 7-9 November 2022

Outline

FairRoot based software (FairMUonE)

- generation
- simulation
- digitization
- reconstruction

READY FOR FULL SIMULATION/RECONSTRUCTION (test runs & final detector)

Alignment

- global alignment
- final detector *z* alignment based on particle energy loss

Machine learning techniques for MUonE online

- fast pattern recognition for trigger
- real time event reconstruction

Computing resources

FairMUonE - generation

FairMUonE software package based on FairRoot framework

Generation

- LO signal generator
- NLO MESMER generator already implemented
 - \rightarrow interface (Fortran/C++)
 - \rightarrow input: beam parameters \rightarrow output: μ -e scattering vertex
 - \rightarrow event-by-event as for LO
- Accurate beam profile implemented
 - \rightarrow simple profiles with fixed energy also available
- Job configuration allows to choose what to be generated
 - \rightarrow minBias or μ -e signal
- Possibility to store separate container of signal particles
 - \rightarrow container with gereration parameters (e.g. weights) will be added

FairMUonE - simulation

Simulation

- New version of Geant4 v10.7.1 implemented into FairRoot
 - \rightarrow containing updated settings relevant for MUonE
 - \rightarrow recommended as reproducing correctly the angular distributions of e^+e^- pair production from muon interactions in the material
- Full test-run detector geometry implemented
 - \rightarrow separate *Si* sensors and calorimeter crystals
 - \rightarrow module tilt
 - \rightarrow works with any number of stations, modules, calorimeter crystals etc.
 - \rightarrow common geometry (*.yaml files*) for simulation/digitization/reconstruction
- Bethe-Heitler 5D Model of γ -ray conversions to e^+e^-
 - \rightarrow more realistic description of pair production in Geant4
 - \rightarrow being implemented to Geant4

FairMUonE - digitization

Digitization for tracking stations implemented

- same detector model as in simulation
- full tracker digitization
- realistic electronic noise and channel cross-talk
- stubs finally produced

Produce MC in Raw Data format

- \rightarrow DAQ would distribute C/C++ API (headers and a library) that will decode/encode data into simple bitfield structure
- \rightarrow coding/encoding planned to be implemented it into the simulation interfacing digitizer to the encoding API

Calo digitization

- 'basic' version of full calorimeter digitization implemented
- more realistic model ongoing

FairMUonE - reconstruction

Track reconstruction

- effective pattern recognition using all the hits (x, y, stereo)
- efficient close track reconstruction + clone killing
- track linking to MC
- Linear track fitting with iterative procedure and outlier removal
- Kalman filter
 - \rightarrow output is usually not a straight line
 - \rightarrow forward and backward iterations \rightarrow best estimated first state

Vertex reconstruction

- Kinematic fit forcing tracks to go through the same point, z position fixed to the middle of the target; find $(x_{vr}y_{v})$ at z_{target} which minimize sum of χ^{2}_{vtx}
 - \rightarrow calculate new track parameters (*slopes*) & angles of outgoing 'electron' and 'muon'
 - \rightarrow for mu-e elastic scattering signal
- Adaptive vertex fitter
 - \rightarrow adaptive weighted least quare method
 - \rightarrow Tukey biweight method used to assign weight to a track according to its $\chi^2(IP)$
 - \rightarrow useful for background studies & longitudinal alignment

Job configuration

Ability to configure output ntuple contents using job configuration,

e.g. gen+sim+digi+reco digi+reco gen+sim+reco

Finally: single ntuple

- generation tree
 - \rightarrow with additional container of signal particles
 - \rightarrow container with gereration parameters to be added
- simulation tree
 - \rightarrow MC tracks
 - \rightarrow Geant "hits" in the tracker
 - \rightarrow Geant "hits" in the calorimeter
- digitization tree
 - \rightarrow strip digits
 - \rightarrow stubs
- reconstruction tree
 - → reconstructed 3D tracks (*linear fit & Kalman filter saved*)
 - → reconstructed vertices (least square fit & adaptive vertex fitter saved)
 - \rightarrow best χ^2 vertex

Reconstruction of test-beam 2018 data

Published in JINST 16 (2021) P06005

- Setup located downstream COMPASS
- Aim of the measurement campaign
 - \rightarrow muon-electron elastic scattering with high statistics
- Using muons from pions decays (hadron beam)
 - \rightarrow estimated beam momentum p_{beam} = (187±7) GeV
- Measure correlation between the scattering angles
 → muon angle vs the electron angle
- Electron energy vs electron angle correlation and PID
- Detector
 - \rightarrow tracking system:

16 stations equipped with AGILE silicon strip sensors 400 micron thick, single sided, about 40 micron intrinsic hit resolution

 \rightarrow electromagnetic calorimeter: 3x3 cell matrix, BGO-PMT crystals, ~8×8 cm²

Conclusion: able to select a clean sample of elastic events

Tracking efficiency studies

Deal with problems related to **close tracks** / multiple scattering for electrons

Possible solutions:

- loose the cuts in clone removal algorithm, i.e. allowing hits to be shared between tracks
- loosening threshold for outlier hits

This gives a possibility to achieve almost 100% tracking efficiency for loose cuts (depending on electron energy)

Possibility to optimally choose the working point according to the signal efficiency vs background rejection

Global alignment

- Global alignment (align x,y,z positions in a single step)
 - \rightarrow alignment parameters α determined by minimizing the global χ^2

$$\chi^2_{\text{global}} = \sum_i \chi^2_i, \qquad \frac{\mathsf{d}\chi^2}{\mathsf{d}\alpha} = 0, \qquad \rho \equiv \rho(\pi(\alpha), \alpha)$$

- \rightarrow global χ^2 is simply the sum of the χ^2 values for all tracks
- \rightarrow but now the residuals ρ depend on the alignment parameters α as well as track fit parameters π

In general: minimize global χ^2 over all the parameters (e.g. track and vtx parameters, bend etc.)

- \rightarrow first determine the total derivatives of χ^2 with respect to the alignment parameters
- \rightarrow solving the system of equations with first and second derivatives of the global χ^2 with respect to α gives the covariance matrix of the residuals of the track fit

MUonE is perfectly suited for the Global χ^2 approach. The problem is manifestly linear, and the convergence should be reached in a single go.

Longitudinal alignment

- Longitudinal software alignment
 - $\rightarrow \Delta z \sim 10 \mu m$ ultimate precision requires the software alignment
 - \rightarrow local survey (e.g. laser technique) could give a precision $\Delta z \sim 50-100 \mu m$
 - \rightarrow solution: very thin target (e.g. 10 μ m) & reconstruct the vertex from this target
- How to get the absolute scale (first station)?
 - \rightarrow precisely positioned two thin foil targets

- \rightarrow use adaptive vertex fitter
- \rightarrow use particle gun with pions to enhance the multiplicity of tracks from vertex
- \rightarrow use global alignment: to align in (x,y) and to find the z positions/resolutions

Use scattered muon energy loss in Si sensors / target to provide absolute z to consecutive stations

Real-time event reconstruction in MUonE

Deep Machine Learning (DNN) techniques for the final detector trigger

- Two-level trigger for the final detector
 - 1. Fast FPGA cards based flexible trigger system employing tracks / track elements (stubs) and allowing to read-out full detector at the rate of 40 MHz
 - \rightarrow use deep machine learning based pattern recognition for track reconstruction
 - improve reconstruction precision and speed up processing
 - → events accepted on the FPGA-based stage will be then passed to the second level, based on the **full online event reconstruction** (*if rate still too high*)
 - 2. Offline quality tracking in the real time reconstruction to select signal at highest possible efficiency ONLINE
 - \rightarrow full track and vertex reconstruction in the real time
 - \rightarrow parallel processing architectures
 - \rightarrow two candidates are: a) new multicore (CPU) XF86 processors with AVX256 b) servers with GPUs
 - \rightarrow Deep Machine Learning used for pattern recognition and track fitting

Deep Machine Learning for MUonE online

- Idea: SPEED UP PATTERN RECOGNITION STEP
 - \rightarrow output is 3D regardless of 2D (x-z, y-z) inputs
- Input: all hits concatenated, no distinction between X, Y and stereo layers
- Ground truth: MC track slope parameters
- Model
 - \rightarrow PyTorch
 - \rightarrow 6 linear layers
 - ightarrow up to 2000 neurons per layer
- Loss function
 - \rightarrow MSELoss from PyTorch uses difference between predicted slope parameters and ground truth

Computer Science 20(4) (2019) 477-493 DCAI 2021 Lecture Notes, vol. 2, p 202-205

3D tracking with DNN

,Direct' algorithm used

- Reconstructed tracks used to assign hits to particles pattern recognition
- Linear fits using RANSAC (Random sample consensus) method to fit the tracks

VERY PROMISSING PRELIMINARY RESULTS

Direct method proved to be successful

- Hit assignment: avg. 11.75 in 12-hit event (98%)
- Events reconstructed: 94%

Plans

- Validation of the results
- Optimizing training process
- Optimizing reconstruction + stereo layers included in the fits
- Use Graph Neural Network (GNN)

Storage and CPU for Test Run

STORAGE: 1 PB storage on eos for raw data and simulation

CPU: Use local production with Krakow Cloud and new Bologna workstation

Bologna workstation

- \rightarrow AMD Ryzen 9 5950X (16 cores, 32 threads) processor
- \rightarrow RAM 4 x 32 = 128 GB
- \rightarrow SSD 1 TB NVMe
- \rightarrow Storage 4 x 12 TB HDD (7200rpm) in RAID10 configuration

Krakow Cloud Cluster

- \rightarrow 100-200 cores
- \rightarrow 1-2 TB storage (transfer data run by run to eos)

Summary

- Software (FairMUonE) ready for data reconstruction and the full detector simulation for both test run and final detector configuration
- Track reconstruction: linear fit & Kalman filter
- Vertrex reconstruction: kinematic fit (signal) & Adaptive Vertex Fitter
- Global alignment with constraint on the absolute z distance using two-thin target system
- Machine learning techniques for MUonE trigger / online event reconstruction are being developed
- Storage and CPU resources for Test Runs allocated