

Perugia involvement in MUonE experiment

Matteo Magherini (matteo.magherini@cern.ch)

on behalf of Perugia MUonE group

MUonE - Measuring a_{μ}^{HLO}

- MUonE: high precision measurement of a_{μ}^{HLO} via elastic muon-electron scattering
 - 160 GeV μ beam on atomic electrons in light target at CERN
- Hadronic contribution to the effective electromagnetic coupling, $\Delta \alpha_{had}(q^2)$ for spacelike squared four-momentum transfers $q^2 = t < 0$, via scattering data

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_0^1 (1-x) \Delta \alpha_{had}(t(x)) dx$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x-1} \quad (0 \le -t \le +\infty)$$

t : momentum trasfered in the reaction

MUonE - Measuring $a_{\mu}^{\ \ \text{HLO}}$

- Measure of the scattering angles \rightarrow precise tracking + high rate acquisition
- Best solution: 2S modules from CMS phase2 upgrade

CMS outer tracker upgrade for High Luminosity

- Hi-Lumi upgrade of LHC after LS3 (~2026)
 - Peak Luminosity ~7.5x10³⁴cm⁻²s⁻¹
 - Expected Pile-up ~200
 - Higher rates and radiation doses wrt Run3
 - New Magnets (11T)
 - Etc..
- Necessary upgrade of current tracker:
 - leakage current or full depletion voltage limitations → big part of current tracker will be inoperational
 - Higher radiation level → upgraded tracker target: integrated luminosity of 3000 fb⁻¹
 - Efficient tracking + Higher pileup → Increase of granularity needed
 - Contribution to **level-1 trigger** → selection of interesting physics at the first trigger stage is extremely challenging at high luminosity

CMS outer tracker upgrade for High Luminosity

- Hi-Lumi upgrade of LHC after LS3 (~2026)
 - Peak Luminosity ~7.5x10³⁴cm⁻²s⁻¹
 - Expected Pile-up ~200
 - Higher rates and radiation dose wrt Run3
 - New Magnets (11T)
 - Etc..
- Necessary upgrade of current tracker:
 - leakage current or full depletion voltage limitations → big part of current tracker will be inoperational
 - Higher radiation level → upgraded tracker target: integrated luminosity of 3000 fb⁻¹
 - Efficient tracking + Higher pileup → Increase of granularity needed
 - Contribution to **level-1 trigger** → selection of interesting physics at the first trigger stage is extremely challenging at high luminosity

CMS outer tracker upgrade

- PS Modules
 - 3 different spacings : 1.6mm & 2.6mm & 4mm
 - One strip sensor: 2.5cm x 100µm strips
 - One macro Pixel sensor : 1.5mm x 100µm pixels
 - Sensor dimensions 5cm x 10 cm
 - two column of 960 strips
 - 32x960 pixels

- 2S Modules
 - 2 different spacings: 1.8mm & 4mm
 - 2 micro strip sensors with 5cm x 90µm strips
 - Sensor dimensions are 10cm x 10cm
 - two column of 1016 strips

CMS outer tracker upgrade

- PS Modules
 - 3 different spacings : 1.6mm & 2.6mm & 4mm
 - One strip sensor: 2.5cm x 100µm strips
 - One macro Pixel sensor : 1.5mm x 100µm pixels
 - Sensor dimensions 5cm x 10 cm
 - two column of 960 strips
 - 32x960 pixels

- 2S Modules
 - 2 different spacings: 1.8mm & 4mm
 - 2 micro strip sensors with 5cm x 90µm strips
 - Sensor dimensions are 10cm x 10cm
 - two column of 1016 strips

CMS outer tracker upgrade

• PS Modules

• 2S Modules

Perugia is an an official assembly center for PS modules and a backup assembly center for 2S

How does a 2S module work?

- Two silicon sensors with small spacing in a module
- Flex hybrid in order to get data from both sensors to one ASIC

How does a 2S module work?

- Two silicon sensors with small spacing in a module
- Flex hybrid in order to get data from both sensors to one ASIC \rightarrow Select track «stubs»
- Tunable correlation windows
- In CMS \rightarrow direct selection of particles p_T
- In MUonE \rightarrow use of the bend information to improve resolution

2S modules anatomy

- 2 silicon sensors "sandwiched" together at fixed distance read out by the same electronics
- Module split in two halves → each half is read out by a CIC (Concentrator Integrated Circuit)
- Each half is split in 8 parts, read out by CBCs (*Cms Binary Chip*)

2S modules anatomy

- 2 silicon sensors "sandwiched" together at fixed distance read out by the same electronics
- Module split in two halves → each half is read out by a CIC (Concentrator Integrated Circuit)
- Each half is split in 8 parts, read out by CBCs (Cms Binary Chip)

What's inside a module

Assembly – sensor's isolator & HV tail gluing

Assembly – sensors sandwich gluing

Assembly – mechanical metrology

Assembly – Wirebonding

Assembly – Encapsulation

Assembly – electrical tests

Assembly – electrical tests

Module PGF2S2101

Assembled modules

135 [µrad]

13 [µm]

-4 [µm]

Rotation

Shift ot

Shift //

Rotation

Shift ot

Shift //

2S_18_5_	_IPG-00001	2S_18_5	Tap carsar 26240.000.2		2S_18_5_IPG-00003			STATES IPG-00004		
Top sensor	36241_030_2	Top sensor	36240_009_2] [Top sensor	36240_031_2		Top sensor	34332_005_2	
Bottom sensor	36241_006_2	Bottom sensor	36241_042_2] [Bottom sensor	36240_049_2		Bottom sensor	34332_005_2	•
SEH	2SSEH-201000028	SEH	2SSEH-201000024	1 [SEH	2SSEH-201000023		SEH	2SSEH-201000021	
FEH-L	2SFEH18L-201000241	FEH-L	2SFEH18L-201000243	1 [FEH-L	2SFEH18L-201000274		FEH-L	2SFEH18L-201000234	4
FEH-R	2SFEH18R-201000343	FEH-R	2SFEH18R-201000342	1 [FEH-R	2SFEH18R-201000337		FEH-R	2SFEH18R-201000212	

Rotation

Shift ot

Shift //

170 [µrad]

39 [µm]

4 [µm]

120 [µrad]

22 [µm]

-10 [µm]

45 [µrad]

6 [µm]

-15 [µm]

Rotation

Shift \perp

Shift //

MUonE logistics plans

Data streams for 2S in CMS

• Two different streams from 2S modules:

Stubs:

- And between seed strip of a cluster in one sensor and a tunable window in the second one
- Just two values:
 - Mean position of the cluster in the seed layer in half strips
 - Bend: distance between cluster in the first sensor and in the second sensor
- 40 MHz rate
- Untriggered

Hits:

- Full informations about the event: 1 bit per EACH strip (2032 bits)
- 750 kHz sampling rate \rightarrow triggered acquisition

Data readout in CMS vs MUonE

Ne

DAQ chain

MUonE station

DTC readout board

Data storage

Data structure

- Output from the modules as "raw" files \rightarrow need to decode them to have physical quantities
- Involvement in: decoding of raw data + definition of data format for track reconstruction and other analysis

Other involvements from Perugia - simluations

- Estimate for the components of the MUonE preliminary setup:
 - angular correlation plots
 - contribution of interaction processes to the total energy loss
- Geant4 versions comparison from pre 10.7 vs 10.7 onward
 → improved simulations of the angular distribution of e⁺e⁻ pairs

Differential macroscopic cross section: carbon

Other involvements from Perugia – data quality monitoring and offline analysis

- Deployment of DQM tools:
 - Fast
 - Interactive
 - Keeping track of both firmware errors and hardware conditions
 - With an eye on scalability for the future
 - In progress: adding fast reconstruction of tracks
- Offline analysis: search for firmware **bugs**, estimate modules **performances**, track reconstruction

MUonE – 2022 test beam setup

- First time: 6 modules readout at high intensity
- 2 of them built in Perugia
 - Originally 6 → parts shortage + newly found issues in already present part brought them down to 2
- One completely equipped station + target
 → first possibility to reconstruct tracks and study MUonE capabilities and resolution
- Stress test for DAQ final system (~ 20 MHz)
- More info in Mark Pesaresi's talk!

Conclusions

- Main involvement from Perugia: 2S modules construction and test
- Overview of why 2S modules have been chosen
- Overview of the production processes
- Other involvements:
 - Simulations
 - Shift from CMS daq test sytem to final system
 - DQM
 - Offline analysis
 - Data format definition

Backup

CMS outer tracker

- PS Modules
 - 3 different spacing : 1.6mm & 2.6mm & 4mm
 - One strip sensor: 2.5cm x 100µm strips
 - One macro Pixel sensor : 1.5mm x 100µm pixels
 - Sensor dimension 5cm x 10 cm
 - two column of 960 strips
 - 32x960 pixels

- 2S Modules
 - 2 different spacing : 1.8mm & 4mm
 - 2 micro strip sensors with 5cm x 90μm strips
 - Sensor dimension are 10cm x 10cm
 - two column of 1016 strips

DAQ for CMS modules

- **Stubs**: average position of the seed cluster + average position of the correlation cluster
 - L1 trigger
 - 40 MHz readout

- **Hits**: information on ALL the strips/pixel in a module (one bit per strip/pixel)
 - Final DAQ
 - 750 kHz readout

Involvement for DAQ chain

- Passage from test system (uDTC) to final readout system (DTC)
 - Transition of the calibration software for 2S modules → calibration SW for PS has just been deployed on the test system, time to transition also that!

Cooling box

Assembly – mechanical metrology

MUonE DAQ chain

DAQ for CMS modules

Pull tests

Test bench

