HVP: Dispersive Approach

Alex Keshavarzi University of Manchester

Workshop on Muon Precision Physics University of Liverpool

7th November 2022

•

Dispersive HVP: the challenge

 $\Delta a_{\mu} = 279(76) \times 10^{-11} \rightarrow 2.39(0.65) \text{ ppm}$

Dispersive HVP: the method

MANCHESTER

 \Rightarrow Similar dispersion integrals for NLO and NNLO HVP

The measured data

The University of Manchester

MANCHESTER

- Dedicated measurements of $e^+e^- \rightarrow$ hadrons.
- $\leq 2 \text{ GeV} = \text{exclusive final states } (\pi^0 \gamma, 2\pi, 3\pi, 4\pi, 5\pi, 6\pi, 7\pi, K\overline{K}, K\overline{K}\pi, K\overline{K}2\pi, 2K\overline{K}, p\overline{p}, n\overline{n} \dots).$
- \geq 2 GeV = inclusive hadronic R-ratio (all hadrons).

Two methods from cross section measurement:

- Direct energy scan fixed CM energy measurement of production cross section.
- Radiative return measure differential cross section with tagged ISR photon to reconstruct production cross section.

$\Delta = \pi \left(\Gamma - M \left(\Lambda \right) \right)$

- <u>Babar ($E_{CM} = \Upsilon(4s)$)</u>
- Comprehensive (almost all) exclusive final states measured below 2 GeV.
- High statistics, from-threshold measurements of $\pi^+\pi^-$.

BES-III ($E_{CM} = 2-5 \text{ GeV}$)

- High-precision measurement of $\pi^+\pi^-$ on ρ -resonance.
- Measurements of other modes, e.g. $\pi^+\pi^-\pi^0$, inclusive.

Radiative Return

- 3 high-precision measurements of $\pi^+\pi^-$ on ρ -resonance, using different methods.
- Combination results in most precise measurement of $\pi^+\pi^-$.

Others

- CLEO-c $(\pi^{+}\pi^{-})$.
- Belle-II (hopefully in the near future).

Direct scan

SND and CMD-3 (Novosibirsk)

- Both located at VEPP-2000
 machine.
- Comprehensive (almost all) exclusive final states measured below 2 GeV.

KEDR (Novosibirsk)

• Inclusive measurement.

Plus, many older measurements from now inactive experiments...

We will hear more about these in the remaining talks today...

Radiative Corrections: MC Generators

The University of Manchester

MANCHESTER

We need high-precision MC generators for radiative corrections at the experiment level:

Here we correct for all detector effects

This one is used to get parameters of the resonances (mass, width,...)

MC generators for exclusive channels (exact NLO + Higher Order terms in some approx)

MC generator	Channel	Precision	Comment
MCGPJ (VEPP-2M, VEPP- 2000)	$e^+e^- \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, \dots$	0.2%	photon jets along all particles (collinear Structure function) with exact NLO matrix elements
BabaYaga@NLO (KLOE, BaBar, BESIII)	e⁺e⁻ → e⁺e⁻,μ⁺μ⁻, γγ	0.1%	QED Parton Shower approach with exact NLO matrix elements

Direct scan:

G. Venanzoni, Status of Radiative Corrections for e+e- data, Fifth Plenary Workshop of the Muon g-2 Theory Initiative

- For 2π , radiative corrections account for ISR and FSR effects.
- For non- 2π :
 - Radiative correction accounts for ISR effects only.
 - Efficiency is calculated via Monte Carlo + corrections for imperfect detector.

Radiative return:

• Precise knowledge of ISR-process through radiator function is paramount. $d\sigma_{\pi\pi\nu}$

$$s \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times H(s,s_{\pi})$$

MC generators for ISR (from approximate to exact NLO)

MC generator	Channel	Precision	Comment
EVA (KLOE)	e⁺e⁻ →π⁺π⁻γ	O(%)	Tagged photon ISR at LO + Structure Function FSR: point-like pions
AFKQED (BaBar)	e⁺e⁻ →π⁺π⁻γ, 	depends on the event selection (can be as good as Phokhara)	ISR at LO +Structure Function
PHOKHARA (KLOE, BaBar BESIII)	$e^+e^- \rightarrow \pi^+\pi^-\gamma, \ \mu^+\mu^-\gamma, 4\pi\gamma, \dots$	0.5%	ISR and FSR(sQED+Form Factor) at NLO

Radiative Corrections: MC Generators

The University of Manchester

MANCHESTER

1874

We need high-precision MC generators for radiative corrections at the experiment level:

Radiative Corrections: VP/FSR Corrections

 $\sigma_{had,\nu}^0$ must be bare (undressed of VP effects) and inclusive of FSR effects. Must correct measured data not in this format: \Rightarrow Reconsider the optical theorem: Im γ had γ $\operatorname{Im} \Pi_{\mathrm{had}}(q^2)$ **VP** corrections **FSR** corrections \Rightarrow Photon FSR formally higher order corrections to $a_{\mu}^{had, VP}$ \Rightarrow Photon VP corresponds to higher order contributions to $a_{\mu}^{had, VP}$ \rightarrow Must subtract VP: \Rightarrow Cannot be unambiguously separated, not accounted for in HO contributions \rightarrow Must be included as part of 1PI hadronic blobs \Rightarrow Fully updated, self-consistent VP routine: [vp_knt_v3_0], available for distribution \Rightarrow Experiment may cut/miss photon FSR \rightarrow Must be added back \rightarrow Cross sections undressed with full photon propagator (must include \Rightarrow For $\pi^+\pi^-$, sQED approximation [Eur. Phys. J. C 24 (2002) 51, Eur. Phys. J. C 28 (2003) 261] imaginary part), $\sigma_{had}^0(s) = \sigma_{had}(s) |1 - \Pi(s)|^2$ \Rightarrow For higher multiplicity states, . Apply conservative uncertainty \Rightarrow If correcting data, apply corresponding radiative correction uncertainty difficult to estimate correction

No showstoppers here. Estimates between groups consistent and very conservative uncertainties applied.

What about tau data?

From the 2020 Theory Initiative WP (Phys.Rept. 887 (2020) 1-166):

"at the required precision to match the e^+e^- data, the present understanding of the IB corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals."

Recent claims that including $\rho - \gamma$ mixing can account for e.g. dispersive vs. lattice, Babar vs KLOE:

Commonly forgotten: mixing of ρ^0 , ω , ϕ with the photon [$\rho^0 - \gamma$ mixing] i.e. effect concerning relation

A critical assessment of $\Delta \alpha_QCD^had$ (mZ) and the prospects for improvements, F. Jegerlehner, ECFA Workshop on parametric uncertainties: α_em

e^+e^- measurement	⇔	LQCD calculation
photon propagator		current correlator
$\langle A(x) A(0) angle$		$\langle j(x) j(0) angle$
an the second	\leftrightarrow	

• how to disentangle QED from QCD in e^+e^- -data ?

- $\rho^0 \gamma$ absent in CC $\tau \rightarrow \nu_{\tau} \pi \pi$ data, but QED-QCD interference part incl. in $e^+e^- \rightarrow \pi^+\pi^-$ data,
- for getting had blob in e^+e^- the $\gamma \rho^0$ mixing has to be removed!
- for the I=1 part of $a_{\mu}^{had}[\pi\pi]$ results in

 $\delta a_{\mu}^{\text{had}}[\rho\gamma] \simeq (5.1 \pm 0.5) \times 10^{-10},$

Taking into account $\rho - \gamma$ interference resolves τ (charged channel) vs. e^+e^- (neutral channel) puzzle, F.J.& R. Szafron [JS11], M. Benayoun et al.. However, not accepted by WP as a possible effect, which is analogous to $Z - \gamma$ interference established at LEP in the 90's.

```
\rho - \gamma \text{ interference}
(absent in charged channel)

often mimicked by large shifts

in M_{\rho} and \Gamma_{\rho}

\rho^{0} is mixing with \gamma:

propagators are obtained by

inverting the symmetric 2 \times 2

self-energy matrix

\hat{D}^{-1} = \begin{pmatrix} q^{2} + \Pi_{\gamma\gamma}(q^{2}) & \Pi_{\gamma\rho}(q^{2}) \\ \Pi_{\gamma\rho}(q^{2}) & q^{2} - M_{0}^{2} + \Pi_{\rho\rho}(q^{2}) \end{pmatrix}
```


Irreducible self-energy contribution at one-loop

What about tau data?

From the 2020 Theory Initiative WP (Phys.Rept. 887 (2020) 1-166):

"at the required precision to match the e^+e^- data, the present understanding of the IB corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals."

Recent claims that including $\rho - \gamma$ mixing can account for e.g. dispersive vs. lattice, Babar vs KLOE:

 $\delta a_{\mu}^{\rm had}[\rho\gamma]\simeq (5.1\pm0.5)\times10^{-10}\,,$

Data tensions, e.g. KLOE vs BaBar

The University of Manchester

MANCHESTER

Large difference between KLOE vs. BaBar is still evident, but not at the level of the g-2 discrepancy!

Compared to $a_{\mu}^{\pi^{+}\pi^{-}} = 503.5 \pm 1.9 \rightarrow a_{\mu}^{\pi^{+}\pi^{-}}$ (BaBar data only) = 513.2 ± 3.8

Simple weighted average of all data $\rightarrow a_{\mu}^{\pi^{+}\pi^{-}}$ (weighted average) = 509.2 ± 2.9 (i.e. – no correlations in determination of mean value)

BaBar data dominate when no correlations are accounted for in the mean value.

> Highlights the importance of incorporating available correlated uncertainties in fit.

- Data tensions also present in other channels.
- Accounted for with error inflation and additional uncertainties.

Dispersive HVP: the real challenge

- > Target: $\sim 0.2\%$ total error.
- Current dispersive uncertainty: ~ 0.5%.
- > Below ~ 2 GeV:
 - > Radiative corrections.
 - Combine data for > 50 exclusive channels.
 - Use isospin / ChPT relations for missing channels (tiny, < 0.05%).
 - Sum all channels for total cross section.
- Above ~ 2 GeV:
 - Combine inclusive data OR pQCD (away from flavour thresholds).
 - > Add narrow resonances.
- Challenges:
 - How to combine data/errors/correlations from different experiments and measurements.
 - Accounting for tensions & sources of systematic error.

Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029.

The University of Manchester

Analysis approaches: DHMZ & KNT

Analysis step	KNT (Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029)	DHMZ (Eur. Phys. J. C80, 241 (2020), [Erratum: Eur. Phys. J. C80, 410 (2020)])	
Blinding	Included for upcoming update	None	
VP Correction	Self-consistent VP routine + conservative uncertainty.	Self-consistent VP routine + some uncertainty (?).	
FSR corrections	Scalar QED for two body + conservative uncertainty.	Scalar QED for two body + some uncertainty (?).	
Re-binning	Re-bin data into "clusters". Scans over cluster configurations for optimisation.	Quadratic splines of all data sets quadratically interpolated on fixed binning.	
Additional constraints	None.	Analyticity constraints for 2π channel.	
Fitting	χ^2 minimisation with correlated uncertainties incorporated globally.	χ^2 minimisation with correlated uncertainties incorporated locally .	
Error inflation	Local χ^2 error inflation.	Local χ^2 error inflation.	
Integration	Trapezoidal for continuum, quintic for resonances.	Quadratic interpolation.	
$a_{\mu}^{\pi^{+}\pi^{-}}(\sqrt{s} < 2)$ = 503.74 ± 1.9	$GeV) \begin{array}{c} 0.15 \\ 0.16 \\ 0.05 \\ 0.06 \\ 0.05 \\ 0.06 \\ 0.05$	$a_{\mu}^{\pi^{+}\pi^{-}}(\sqrt{s} < 2 \text{ GeV})$	

Other analyses and choices

Phys.Rept. 887 (2020) 1-166.

Analyticity constraints JHEP 02, 006 (2019). JHEP 08, 137 (2019). Eur. Phys. J. C80, 241 (2020). Eur. Phys. J. C80, 410 (2020)].

- Constraints to hadronic cross section applied from analyticity, unitarity, and crossing symmetry.
- These allow derivations of global fit functions based on fundamental properties of QCD.
- Can lead to reduction in uncertainties.
- Successfully applied for 2π , 3π , $\pi^0\gamma$ channels.

Fred Jegerlehner's combination

Energy range	ACD18	CHS18	DHMZ19	DHMZ19'	KNT19
$\leq 0.6 \text{GeV}$		110.1(9)	110.4(4)(5)	110.3(4)	108.7(9)
$\leq 0.7 \text{GeV}$		214.8(1.7)	214.7(0.8)(1.1)	214.8(8)	213.1(1.2)
$\leq 0.8 \text{GeV}$		413.2(2.3)	414.4(1.5)(2.3)	414.2(1.5)	412.0(1.7)
$\leq 0.9 \text{GeV}$		479.8(2.6)	481.9(1.8)(2.9)	481.4(1.8)	478.5(1.8)
$\leq 1.0 \text{GeV}$		495.0(2.6)	497.4(1.8)(3.1)	496.8(1.9)	493.8(1.9)
[0.6, 0.7] GeV		104.7(7)	104.2(5)(5)	104.5(5)	104.4(5)
[0.7, 0.8] GeV		198.3(9)	199.8(0.9)(1.2)	199.3(9)	198.9(7)
[0.8, 0.9] GeV		66.6(4)	67.5(4)(6)	67.2(4)	66.6(3)
[0.9, 1.0] GeV		15.3(1)	15.5(1)(2)	15.5(1)	15.3(1)
$\leq 0.63 \text{GeV}$	132.9(8)	132.8(1.1)	132.9(5)(6)	132.9(5)	131.2(1.0)
[0.6, 0.9] GeV		369.6(1.7)	371.5(1.5)(2.3)	371.0(1.6)	369.8(1.3)
$\sqrt{0.1}, \sqrt{0.95}$ GeV		490.7(2.6)	493.1(1.8)(3.1)	492.5(1.9)	489.5(1.9)

KNT19

692.8(2.4)

FJ17

688.1(4.1)

- Data-sets from the same experiment are combined in local regions of \sqrt{s} using a global χ^2 minimisation.
- Overlapping regions of combined data are then averaged.
- Resonances are parameterised using models (e.g. G-S, BW), with masses are fixed to PDG values.
 F. Jegerlehner, EPJ Web Conf. 199, 01010 (2019), arXiv:1809.07413 [h

BDJ19

687.1(3.0)

DHMZ19

694.0(4.0)

• τ data are/aren't included. Isospin corrections are made for e.g. $\rho - \gamma$ mixing.

Broken Hidden Local Symmetry (Benyanoun, Jegerlehner)

- Effective Lagrangian based on vector meson dominance and resonance ChPT.
- BHLS model parameters are extracted from experimental data.
- Can lead to drastically reduced uncertainties, but some data must be discarded.

 $\times 10^{10}$

01010 (2019), arXiv:1809.07413 [hepph].

M. Benayoun, L. Delbuono, and F. Jegerlehner, Eur. Phys. J. C80, 81 (2020), [Erratum: Eur. Phys. J. C80, 244 (2020)], arXiv:1903.11034 [hep-ph].

Comparisons and the 2021 WP result

The University of Manchester

MANCHESTER

KNT19, Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029.

a^{had, LOVP} $= 693.84 \pm 1.19_{stat} \pm 1.96_{svs} \pm 0.22_{vp} \pm 0.71_{fsr}$

$= 692.78 + 2.42_{tot}$

Detailed comparisons by-channel and energy range between direct integration results:

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7, ∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\rm DV+QCD}$	692.8(2.4)	1.2

+ evaluations using unitarity & analyticity constraints for $\pi\pi$ and $\pi\pi\pi$ channels [CHS 2018, HHKS 2019]

Conservative merging to obtain a realistic assessment of the underlying uncertainties:

- Account for differences in results from the same experimental inputs.
- Include correlations between systematic errors
 - $a_{\mu}^{\text{HVP,LO}} = 693.1 (4.0) \times 10^{-10}$

14

Phys.Rept. 887 (2020) 1-166.

The University of Manchester

MANCHESTER

1824

Connection with $\Delta \alpha_{had}$

- $\Delta \alpha_{had}$ limits precision of EW precision fits and so the effectiveness of high-precision EW measurements.
- Can draw a direct parallel with evaluation of the Muon g-2 and probe the muon g-2 discrepancy.
- Is a test of low-energy hadronic theory, e.g. Lattice QCD vs dispersive e^+e^- data.

	e^+e^- c	e^+e^- data ~ 0.5%		
Parameter	Input value	Fit result	Result w/o input value	
M_W (GeV)	80.379(12)	80.359(3)	80.357(4)(5)	
M_H (GeV)	125.10(14)	125.10(14)	94^{+20+6}_{-18-6}	
$\Delta \alpha_{\rm bad}^{(5)}(M_Z^2) \times 10^4$	276.1(1.1)	275.8(1.1)	272.2(3.9)(1.2)	
m_t (GeV)	172.9(4)	173.0(4)		
$\alpha_s(M_Z^2)$	0.1179(10)	0.1180(7)	•••	
M_Z (GeV)	91.1876(21)	91.1883(20)		
Γ_Z (GeV)	2.4952(23)	2.4940(4)	•••	
Γ_W (GeV)	2.085(42)	2.0903(4)	•••	
$\sigma_{\rm had}^0$ (nb)	41.541(37)	41.490(4)	•••	
R_{I}^{0}	20.767(25)	20.732(4)	•••	
R_c^0	0.1721(30)	0.17222(8)		
R_{h}^{0}	0.21629(66)	0.21581(8)		
$\bar{m_c}$ (GeV)	1.27(2)	1.27(2)		
$\bar{m_b}$ (GeV)	$4.18^{+0.03}_{-0.02}$	$4.18\substack{+0.03\\-0.02}$		
$A_{\rm FB}^{0,l}$	0.0171(10)	0.01622(7)		
$A_{\text{FB}}^{0,c}$	0.0707(35)	0.0737(2)		
$A_{\rm FB}^{0,b}$	0.0992(16)	0.1031(2)	•••	
Ac	0.1499(18)	0.1471(3)		
Ac	0.670(27)	0.6679(2)	•••	
Ab	0.923(20)	0.93462(7)	•••	
$\sin^2 \theta_{\rm eff}^{\rm lcp}(Q_{\rm FB})$	0.2324(12)	0.23152(4)	0.23152(4)(4)	
$\sin^2 \theta_{\rm eff}^{\rm lep}$ (Had Coll)	0.23140(23)	0.23152(4)	0.23152(4)(4)	

Uncertainty from

Experimentally measured hadronic cross section:

Keshavarzi, Marciano, Passera and Sirlin, *Phys.Rev.D* 102 (2020) 3, 033002

The muon g-2 and $\Delta \alpha$ connection

Keshavarzi, Marciano, Passera and Sirlin, *Phys.Rev.D* 102 (2020) 3, 033002

- Shift KNT hadronic cross section in fully energy-dependent (pointlike and binned) analysis to account for Δa_{μ} .
- Input new values of $\Delta \alpha$ into Gfitter to predict EW observables.
- Analysis greatly constrained from more precise EW observables measurements and more comprehensive hadronic cross section.
 - Can Δa_{μ} be due to hypothetical mistakes in the hadronic $\sigma(s)$?
 - An upward shift of $\sigma(s)$ also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$.
 - Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} &\to \\ \mathbf{a}_{\mu}^{\text{HLO}} &\to \end{aligned} \begin{cases} a &= \int_{4m_{\pi}^2}^{s_u} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^3}, \ s_u < M_Z^2, \\ b &= \int_{4m_{\pi}^2}^{s_u} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_Z^2}{(M_Z^2 - s)(4\alpha\pi^2)}, \end{aligned}$$

and the increase

Note the very different energydependent weighting of the integrands...

$$\Delta\sigma(s) = \epsilon\sigma(s)$$

 ϵ >0, in the range:

$$\sqrt{s} \in [\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2$$

Use Gfitter and precise and up-to-date compilation of total hadronic cross section from KNT, Keshavarzi, Nomura and Teubner, Phys.Rev.D 101 (2020) 014029.

Shifting $\Delta \sigma(s)$ to fix Δa_{μ} is possible, but:

- Excluded above ~ 1 GeV.
- Increases to cross section needed are orders of magnitude larger than experimental uncertainties.

Plans and prospect for improvements

- New data:
 - New two-pion measurements from CMD-3 imminent.
 - Also, high-stats two-pion data from BaBar/KLOE, and hopefully from Belle-2.
 - Measurements expected for other channels, issues to be resolved in three-pions.
- Analysis choices:
 - Blinding. This is now implemented for KNT.
 - Updates to combination, fitting etc.
 - Modern hadronic cross section database.
 - Updated software (e.g. FORTRAN --> python).
- $\Delta \alpha$ had [:]
 - $\Delta \alpha_{had}$ improvements also possible via e.g. data smoothing.
 - Full delta alpha analysis long-planned from KNT. Full update to software package intended.
- Comparisons with lattice:
 - Up-to-date values for Euclidean windows.

Conclusions

- SM prediction is now entirely limited by HVP.
- This is worsened by the current dispersive vs lattice discrepancies.
- Strong and robust programme of consistent hadronic cross sections from decades of measurements from different experiments → more to come.
- Work needed to improve MC generators for experimental radiative corrections.
- Data tensions exist but covered by additional uncertainties.
- Several options for analysis choices by different groups. These lead to some different results.
- But, various HVP dispersive evaluations have been consistent for decades. No sign of this changing.
- "Allowed" changes to the hadronic cross section to account for the known discrepancies are orders of magnitude larger than experimental uncertainties.
- Plans to improve dispersive HVP further are underway. Aiming for 0.2% uncertainty.

In general, zero indication that there is anything missing, incorrect or misunderstood in dispersive HVP.