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Dispersive HVP: the challenge
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● 𝑎! arises due to 
quantum 
corrections / 
higher order 
interactions / loop 
contributions 

● All SM particles 
contribute → 
Calculate and 
sum all sectors of 
the SM.



Dispersive HVP: the method
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Any and all
permitted 
hadrons

Strongly 
weighted at low-

energy (non-
perturbative 

regime)



The measured data
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Dedicated measurements of 𝑒!𝑒" → hadrons. 
• ≲ 2 GeV = exclusive final states (𝜋#𝛾, 2𝜋, 3𝜋, 4𝜋, 5𝜋, 6𝜋, 7𝜋, 𝐾 .𝐾, 𝐾 .𝐾𝜋, 𝐾 .𝐾2𝜋, 2𝐾 .𝐾, 𝑝𝑝̅, 𝑛.𝑛…).
• ≳ 2 GeV = inclusive hadronic R-ratio (all hadrons).
Two methods from cross section measurement:
• Direct energy scan - fixed CM energy measurement of production cross section.
• Radiative return – measure differential cross section with tagged ISR photon to reconstruct production cross section.

Radiative Return Direct scan

Babar (𝐸$% = Υ(4𝑠))
• Comprehensive (almost all) 

exclusive final states measured 
below 2 GeV.

• High statistics, from-threshold 
measurements of 𝜋!𝜋".

KLOE (𝐸$% = 𝜙)
• 3 high-precision measurements of 

𝜋!𝜋" on 𝜌-resonance, using 
different methods.

• Combination results in most 
precise measurement of 𝜋!𝜋".

BES-III (𝐸$% = 2-5 GeV)
• High-precision measurement of 

𝜋!𝜋" on 𝜌-resonance.
• Measurements of other modes, 

e.g. 𝜋!𝜋"𝜋#, inclusive.

Others
• CLEO-c (𝜋!𝜋").
• Belle-II (hopefully in the near 

future).

We will hear more about these in the remaining talks today…

SND and CMD-3 (Novosibirsk)
• Both located at VEPP-2000 

machine.
• Comprehensive (almost all) 

exclusive final states measured 
below 2 GeV.

KEDR (Novosibirsk)
• Inclusive measurement.

Plus, many older measurements from now 
inactive experiments…



Radiative Corrections: MC Generators
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We need high-precision MC generators for radiative corrections at the experiment level:

Direct scan:
• For 2𝜋, radiative corrections account for ISR and FSR effects.
• For non-2𝜋:

• Radiative correction accounts for ISR effects only.
• Efficiency is calculated via Monte Carlo + corrections for 

imperfect detector.
Radiative return:
• Precise knowledge of ISR-process through radiator function is 

paramount.

MC generators for exclusive channels (exact 
NLO + Higher Order terms in some approx)

MC generators for ISR (from 
approximate to exact NLO) 

G. Venanzoni, Status of Radiative Corrections for e+e- data, Fifth 
Plenary Workshop of the Muon g-2 Theory Initiative
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Radiative corrections and MC generators for e+e- à

hadrons, leptons should aim at 0.1% uncertainty. 

NNLO calculation needed!

In desperate need of people-power!



Radiative Corrections: VP/FSR 
Corrections
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𝜎had,'
# must be bare (undressed of VP effects) and inclusive of FSR effects. Must correct measured data not in this format:

VP corrections FSR corrections

No showstoppers here. Estimates between groups consistent and very conservative uncertainties applied.



What about tau data?
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From the 2020 Theory Initiative WP (Phys.Rept. 887 (2020) 1-166):

“at the required precision to match the 𝒆!𝒆" data, the present understanding of the IB corrections to τ data is 
unfortunately not yet at a level allowing their use for the HVP dispersion integrals.”

Recent claims that including 𝜌 − 𝛾 mixing can account for e.g. dispersive vs. lattice, Babar vs KLOE:

A critical assessment of ∆α_QCD^had (mZ) and the prospects for improvements, F. 
Jegerlehner, ECFA Workshop on parametric uncertainties: α_em
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“at the required precision to match the 𝒆!𝒆" data, the present understanding of the IB corrections to τ data is 
unfortunately not yet at a level allowing their use for the HVP dispersion integrals.”
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1. In a model-independent description of strong physics (QCD), the 𝝆 is not a 

physical final state that you should account for in interaction with the photon. 

All production mechanisms effects are encapsulated in the final state.

2. There is a power counting issue. The  𝝆 − 𝜸 mixing diagram is part of the higher 

order HVP. 



Data tensions, e.g. KLOE vs BaBar
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Large difference between KLOE vs. BaBar is still evident, but not at the level of the g-2 discrepancy!

Compared to 𝑎!"
!""= 503.5 ± 1.9 → 𝑎!"

!""(BaBar data only) = 513.2 ± 3.8

Simple weighted average of all data → 𝑎!"
!""(weighted average) = 509.2 ± 2.9

(i.e. – no correlations in determination of mean value) 

BaBar data dominate when no correlations are accounted for in the mean value.
Ø Highlights the importance of incorporating available correlated uncertainties in fit.

• Data tensions also present 
in other channels.

• Accounted for with error 
inflation and additional 
uncertainties.



Dispersive HVP: the real challenge
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Ø Target: ∼ 0.2% total error.
Ø Current dispersive uncertainty: 

∼ 0.5%.
Ø Below ∼ 2 GeV:

Ø Radiative corrections.
Ø Combine data for > 50 exclusive 

channels.
Ø Use isospin / ChPT relations for 

missing channels (tiny, < 0.05%).
Ø Sum all channels for total cross 

section. 
Ø Above ∼ 2 GeV:

Ø Combine inclusive data OR pQCD 
(away from flavour thresholds).

Ø Add narrow resonances.
Ø Challenges:

Ø How to combine
data/errors/correlations from 
different experiments and 
measurements.

Ø Accounting for tensions & sources
of systematic error.
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Non-perturbative:
experimental data 

(plus small isospin & 
ChPT estimations)

Non-perturbative & perturbative:
experimental data OR pQCD 
(and Breit-Wigner for narrow 

resonances)

Perturbative:
pQCD

Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029.



Analysis approaches: DHMZ & KNT
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Analysis step KNT (Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029) DHMZ (Eur. Phys. J. C80, 241 (2020), [Erratum: Eur. Phys. J. C80, 410 (2020)])

Blinding Included for upcoming update None

VP Correction Self-consistent VP routine + conservative uncertainty. Self-consistent VP routine + some uncertainty (?).

FSR corrections Scalar QED for two body + conservative uncertainty. Scalar QED for two body + some uncertainty (?).

Re-binning Re-bin data into “clusters”. Scans over cluster configurations 
for optimisation.

Quadratic splines of all data sets quadratically interpolated on fixed 
binning.

Additional 
constraints

None. Analyticity constraints for 2𝜋 channel.

Fitting 𝜒% minimisation with correlated uncertainties incorporated 
globally.

𝜒% minimisation with correlated uncertainties incorporated locally.

Error inflation Local 𝜒% error inflation. Local 𝜒% error inflation.

Integration Trapezoidal for continuum, quintic for resonances. Quadratic interpolation.

𝑎&'
!'" 𝑠 < 2 GeV

= 503.74 ± 1.96
𝑎&'

!'" 𝑠 < 2 GeV
= 507.14 ± 2.58



Other analyses and choices

13

Analyticity constraints
• Constraints to hadronic cross section applied from 

analyticity, unitarity, and crossing symmetry.
• These allow derivations of global fit functions based on 

fundamental properties of QCD.
• Can lead to reduction in uncertainties.
• Successfully applied for 2𝜋, 3𝜋, 𝜋#𝛾 channels.

Fred Jegerlehner’s combination
• Data-sets from the same experiment are combined in local regions of 𝑠 using a global 𝜒$ minimisation.
• Overlapping regions of combined data are then averaged.
• Resonances are parameterised using models (e.g. G-S, BW), with masses are fixed to PDG values.
• 𝜏 data are/aren’t included. Isospin corrections are made for e.g. 𝜌 − 𝛾 mixing.

Broken Hidden Local Symmetry (Benyanoun, Jegerlehner)
• Effective Lagrangian based on vector meson dominance and resonance ChPT.
• BHLS model parameters are extracted from experimental data.
• Can lead to drastically reduced uncertainties, but some data must be discarded.

Phys.Rept. 887 (2020) 1-166.

M. Benayoun, L. Delbuono, and F. Jegerlehner, Eur. Phys. J. C80, 81 
(2020), [Erratum: Eur. Phys. J. C80, 244 (2020)], arXiv:1903.11034 
[hep-ph].

F. Jegerlehner, EPJ Web Conf. 199, 
01010 (2019), arXiv:1809.07413 [hep-
ph].

JHEP 02, 006 (2019). JHEP 08, 137 (2019). Eur. Phys. J. C80, 241 (2020). Eur. 
Phys. J. C80, 410 (2020)].



Comparisons and the 2021 WP result
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Ø Precision better than 
0.4%

(uncertainties include all 
available correlations 

and 𝜒( inflation)
Ø Clear 𝜋!𝜋" dominance 

𝑎)
had, LOVP = 693.84 ± 1.19*+,+ ± 1.96*-* ± 0.22./ ± 0.710*1

= 692.78 ± 2.42+2+

Conservative merging to obtain a realistic assessment of the 
underlying uncertainties: 
• Account for differences in results from the same 

experimental inputs.
• Include correlations between systematic errors 

KNT19, Phys.Rev.D 97 (2018) 114025, Phys.Rev.D 101 (2020) 014029. Phys.Rept. 887 (2020) 1-166.



The importance of the HVP for ∆𝒂𝝁
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C. Lehner, The hadronic vacuum polarization 
(RBC/UKQCD), Fifth Plenary Workshop of the Muon g-
2 Theory Initiative



Connection with 𝚫𝜶had
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• 𝛥𝛼had limits precision of EW precision fits and so the effectiveness of high-precision EW measurements.
• Can draw a direct parallel with evaluation of the Muon g-2 and probe the muon g-2 discrepancy.
• Is a test of low-energy hadronic theory, e.g. Lattice QCD vs dispersive 𝑒!𝑒" data.

Keshavarzi, Marciano, Passera and Sirlin, 
Phys.Rev.D 102 (2020) 3, 033002

Uncertainty from 
𝑒!𝑒" data ~ 0.5%
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The muon g-2 and Δ𝛼 connection
Keshavarzi, Marciano, Passera and Sirlin, Phys.Rev.D 102 (2020) 3, 033002

• Shift KNT hadronic cross section in fully energy-dependent (point-
like and binned) analysis to account for Δ𝑎&.

• Input new values of Δ𝛼 into Gfitter to predict EW observables.
• Analysis greatly constrained from more precise EW observables 

measurements and more comprehensive hadronic cross section.

Shifting Δ𝜎 𝑠 to fix Δ𝑎& is possible, but: 

• Excluded above ~ 1 GeV.
• Increases to cross section needed are orders of 

magnitude larger than experimental uncertainties.

Note the very different energy-
dependent weighting of the 

integrands…

Use Gfitter and precise and up-to-date compilation of total hadronic cross section from KNT, 
Keshavarzi, Nomura and Teubner, Phys.Rev.D 101 (2020) 014029.



Plans and prospect for improvements
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• New data:
• New two-pion measurements from CMD-3 

imminent.
• Also, high-stats two-pion data from 

BaBar/KLOE, and hopefully from Belle-2.
• Measurements expected for other channels, 

issues to be resolved in three-pions.
• Analysis choices:

• Blinding. This is now implemented for KNT.
• Updates to combination, fitting etc.
• Modern hadronic cross section database.
• Updated software (e.g. FORTRAN --> python).

• 𝛥𝛼had :
• 𝛥𝛼had improvements also possible via e.g. data smoothing.
• Full delta alpha analysis long-planned from KNT. Full update to software package intended.

• Comparisons with lattice:
• Up-to-date values for Euclidean windows.



Conclusions
• SM prediction is now entirely limited by HVP. 
• This is worsened by the current dispersive vs lattice discrepancies.
• Strong and robust programme of consistent hadronic cross sections from decades of 

measurements from different experiments à more to come.
• Work needed to improve MC generators for experimental radiative corrections.
• Data tensions exist but covered by additional uncertainties.
• Several options for analysis choices by different groups. These lead to some different results.
• But, various HVP dispersive evaluations have been consistent for decades. No sign of this 

changing.
• “Allowed” changes to the hadronic cross section to account for the known discrepancies are 

orders of magnitude larger than experimental uncertainties. 
• Plans to improve dispersive HVP further are underway. Aiming for 0.2% uncertainty.

19

In general, zero indication that there is anything 
missing, incorrect or misunderstood in dispersive 

HVP.


