HVP from Lattice QCD

Christoph Lehner (Regensburg)

November 8, 2022 - Liverpool

Status and impact of hadronic vacuum polarization contribution

Ab-initio lattice QCD (+QED) calculations are maturing

Difficult problem: scales from $2 m_{\pi}$ to several GeV enter; cross-checks needed at high precision

Hybrid window method restricts scales that enter from lattice/dispersive data

Dispersive, $e^{+} e^{-} \rightarrow$ hadrons (20+ years of experiments)

Now first published lattice result with sub-percent precision available (BMW20), cross-checks are crucial to establish or refute high-precision lattice methodology

Summary of HVP status:

- Decades of $e^{+} e^{-}$dispersive results suggest a strong tension (4.2 σ)
- A first sub-percent precision lattice result (BMW20) suggests only minimal tension (1.5σ)

Two main questions addressed in this talk:

- Consistency of BMW20 lattice result with other lattice results
- Consistency of lattice results with R-ratio

Consistency of BMW20 lattice result with other lattice results

Diagrams

(a) V

(b) S

(d) T_{d}

(e) D1

(f) $\mathrm{D} 1_{d}$

(g) D2
(h) $\mathrm{D} 2_{d}$

(i) F

(j) D3

(a) M

(b) R

(c) R_{d}

(d) O

Overview of individual contributions

Diagrams - Isospin limit

FIG. 1. Quark-connected (left) and quark-disconnected (right) diagram for the calculation of $a_{\mu}^{\mathrm{HVP}}{ }^{\mathrm{LO}}$. We do not draw gluons but consider each diagram to represent all orders in QCD.

Up, down; isospin symmetric limit; $m_{\pi}=m_{\pi}^{0}$

$a_{\mu, \text { ud, conn, isospin }} \times 10^{10}$

Strange

Diagrams - QED corrections

For diagram F we enforce exchange of gluons between the quark loops as otherwise a cut through a single photon line would be possible. This single-photon contribution is counted as part of the HVP NLO and not included for the HVP LO.

Attention needed

Diagrams - Strong isospin breaking

For the HVP R is negligible since $\Delta m_{u} \approx-\Delta m_{d}$ and O is $\mathrm{SU}(3)$ and $1 / N_{c}$ suppressed.

Lehner, Meyer 2020: NLO PQChPT: FV effects in connected and disconnected cancel but are each significant $O\left(4 \times 10^{-10}\right)$; PQChPT expects cancellation between connected and disconnected contribution $a_{\mu}^{\text {SIB, conn. }}=-a_{\mu}^{\text {SIB, disc. }}=6.9 \times 10^{-10}$

Attention on light-quark isospin-symmetric contribution and QED disconnected contribution

Lattice QCD - Time-Moment Representation

Starting from the vector current $J_{\mu}(x)=i \sum_{f} Q_{f} \bar{\Psi}_{f}(x) \gamma_{\mu} \Psi_{f}(x)$ we may write

$$
a_{\mu}^{\mathrm{HVP} \mathrm{LO}}=\sum_{t=0}^{\infty} w_{t} C(t)
$$

with

$$
C(t)=\frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2}\left\langle J_{j}(\vec{x}, t) J_{j}(0)\right\rangle
$$

and w_{t} capturing the photon and muon part of the HVP diagrams (Bernecker-Meyer 2011).

The correlator $C(t)$ is computed in lattice QCD+QED at physical pion mass with non-degenerate up and down quark masses including up, down, strange, and charm quark contributions. The missing bottom quark contributions are computed in pQCD.

Lattice QCD - Example of correlation function $C(t)$ (RBC/UKQCD18)

Large discretization errors at short distance, large finite-volume errors and statistical errors at large distance

Window method (introduced in RBC/UKQCD 2018)
We therefore also consider a window method. Following Meyer-Bernecker 2011 and smearing over t to define the continuum limit we write

$$
a_{\mu}=a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}}
$$

with

$$
\begin{aligned}
a_{\mu}^{\mathrm{SD}} & =\sum_{t} C(t) w_{t}\left[1-\Theta\left(t, t_{0}, \Delta\right)\right], \\
a_{\mu}^{\mathrm{W}} & =\sum_{t} C(t) w_{t}\left[\Theta\left(t, t_{0}, \Delta\right)-\Theta\left(t, t_{1}, \Delta\right)\right] \\
a_{\mu}^{\mathrm{LD}} & =\sum_{t} C(t) w_{t} \Theta\left(t, t_{1}, \Delta\right), \\
\Theta\left(t, t^{\prime}, \Delta\right) & =\left[1+\tanh \left[\left(t-t^{\prime}\right) / \Delta\right]\right] / 2
\end{aligned}
$$

All contributions are well-defined individually and can be computed from lattice or R-ratio via $C(t)=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s t}}$ with $R(s)=\frac{3 s}{4 \pi \alpha^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \mathrm{had}\right)$.
a_{μ}^{W} has small statistical and systematic errors on lattice!

Use these windows as a lattice internal cross-check

Isospin-symmetric light quark-connected contribution to a_{μ}^{W} for $t_{0}=0.4 \mathrm{fm}, t_{1}=1.0 \mathrm{fm}$; Note that the new RBC/UKQCD22 result was done in a fully blinded way with 5 independent analysis groups. It also uses 24 instead of 2 data points for the continuum extrapolation compared to the pioneering RBC/UKQCD18 result with which it is in 2.1σ tension.

Use these windows as a lattice internal cross-check

Isospin-symmetric light quark-connected contribution to a_{μ}^{SD} for $t_{0}=\mathrm{fm}$; consistent with pQCD (RBC/UKQCD 2022)

Use these windows as a lattice internal cross-check

Multiple complete lattice QCD results for a_{μ}^{W} for $t_{0}=0.4 \mathrm{fm}, t_{1}=1.0$ fm now also exist that exhibit a tension with the R -ratio of approximately 3.6σ.

Summary of current status

- Short distance window (up to $t_{0}=0.4 \mathrm{fm}$) dominated by pQCD, no sign of tension between data-driven (+pQCD) and LQCD
- Intermediate window ($t_{0}=0.4 \mathrm{fm}, t_{1}=1.0 \mathrm{fm}$), we have now established a 3.6σ tension of

$$
a_{\mathrm{W}}^{\text {Lattice }}-a_{\mathrm{W}}^{\text {Data-Driven }}=6.2(1.7) \times 10^{-10}
$$

- The long-distance window is at this point not yet independently checked!
- The total a_{μ} BMW20 result lies approximately 15×10^{-10} above data-driven results.

Consistency of lattice result with R-ratio

$R(s)=\frac{3 s}{4 \pi \alpha^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \mathrm{had}\right), \quad C(t)=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s} t}$

Tensions in input data, however, already taken into account in WP20 merger of KNT19 and DHMZ19:

What does tension in windows mean for R-ratio?

If there is a shift in R-ratio, it crucially depends on which energy to understand what the impact on $\Delta \alpha$ and EW precision physics is.

Express Euclidean Windows in time-like region:

$$
\begin{equation*}
a_{\mu}=\int_{0}^{\infty} d s R(s) K(s) \tag{1}
\end{equation*}
$$

and window

$$
\begin{equation*}
a_{\mu}^{\mathrm{W}}=\int_{0}^{\infty} d s R(s) K(s) P(s) \tag{2}
\end{equation*}
$$

Phys.Lett.B 833 (2022) 137313

Study of windows for different t_{0} and t_{1} can give some energy resolution!

Study of windows for different t_{0} and t_{1} can give some energy resolution!

Study of windows for different t_{0} and t_{1} can give some energy resolution!

Below black line, we can use Lellouche-Lüscher-Meyer formalism to get $R(s)$ from lattice directly! Programs for this by Mainz and RBC/UKQCD.

First results for more windows already available - Lehner \& Meyer 2020

Here: $t_{0}=t, t_{1}=t+0.1 \mathrm{fm}$
No results for QED, SIB, and charm contribution yet available.

First results for more windows already available - Lehner \& Meyer 2020

t_{0} / fm	t_{1} / fm	Δ / fm	$a_{\mu}^{\text {ud,conn.,isospin }} 10^{10}$	$a_{\mu}^{\mathrm{s}, \text { conn., isospin }} 10^{10}$					
Total			$657(26)(12)$	$52.83(22)(65)$					
0.0	0.1	0.15	3.60 (00)(59)	0.81(00)(12)					
0.1	0.2	0.15	$8.649(03)(73)$	$1.666(01)(12)$					
0.2	0.3	0.15	$14.27(01)(82)$	$2.57(00)(16)$					
0.3	0.4	0.15	18.67(02)(35)	$3.448(05)(65)$					
0.4	0.5	0.15	$24.617(35)(63)$	$4.170(07)(20)$					
0.5	0.6	0.15	29.47 (06)(29)	$4.666(10)(59)$					
0.6	0.7	0.15	$33.85(10)(37)$	$4.866(13)(74)$	0.0	0.2	0.15	$12.25(00)(52)$	$2.48(00)(11)$
0.7	0.8	0.15	37.71 (14)(15)	$4.799(16)(39)$	0.2	0.4	0.15	$32.95(03)(48)$	$6.02(01)(10)$
0.8	0.9	0.15	$39.55(20)(21)$	$4.505(17)(44)$	0.4	0.6	0.15	$54.08(10)(29)$	$8.837(18)(74)$
0.9	1.0	0.15	$40.77(27)(31)$	$4.058(19)(65)$	0.6	0.8	0.15	$71.55(24)(38)$	$9.666(29)(91)$
1.0	1.1	0.15	40.86(44)(41)	3.527(19)(76)	0.8	1.0	0.15	80.33(47)(44)	$8.56(04)(10)$
1.1	1.2	0.15	39.81 (54)(42)	2.973(19)(75)	0.3	1.0	0.15	224.6 (0.8)(1.1)	30.51 (08)(25)
1.2	1.3	0.15	$38.10(65)(51)$	2.441 (18)(77)	0.3	1.3	0.15	$343.1(2.6)(2.0)$	39.45 (13)(35)
1.3	1.4	0.15	$35.54(77)(53)$	$1.955(17)(67)$	0.3	1.6	0.15	441.0(5.1)(3.4)	44.12(17)(49)
1.4	1.5	0.15	$32.70(88)(56)$	$1.534(15)(60)$	0.4	1.0	0.15	$205.97(79)(90)$	27.06 (08)(21)
1.5	1.6	0.15	$29.50(100)(58)$	$1.181(13)(52)$	0.4	1.3	0.15	$324.6(2.6)(1.9)$	36.01 (13)(36)
1.6	1.7	0.15	25.51(81)(66)	0.894(12)(44)	0.4	1.6	0.15	422.4(5.1)(3.5)	40.68(17)(51)
1.7	1.8	0.15	$22.20(85)(66)$	0.667(10)(37)	0.4	1.0	0.05	216.5(0.8)(6.2)	$27.9(0.1)(1.1)$
1.8	1.9	0.15	19.18(86)(67)	0.491 (08)(30)	0.4	1.0	0.1	209.80(77)(79)	$27.70(08)(21)$
1.9	2.0	0.15	$16.59(89)(75)$	$0.357(07)(24)$	0.4	1.0	0.2	202.10(82)(91)	26.24(08)(21)

More results expected by other collaborations soon! See also one-sided windows computed in FHM2022a.

- In the intermediate window a 3.6σ tension between data-driven and lattice QCD is now established. This accounts for a shift of $O\left(6 \times 10^{-10}\right)$.
- The difference between the total BMW 20 and the data-driven result is $O\left(15 \times 10^{-10}\right)$.
- The study of multiple window quantities may give insight into the energy region driving such a tension.
- Over the next year, we may expect at least one additional complete LQCD calculation at the sub-percent level.

