

Experimental Inputs to HVP with Initial State Radiation

Riccardo Aliberti Workshop on Muon Precision Physics Liverpool, 7-9 November 2022

Muon (g-2): SM and Experiment $π^+π^-π^+π^-, π^0\gamma,$ E > 1.8 GeV: 7% σ²(a_µ) K_sK_L, K⁺K⁻:. **σ²(HVP)** $e^+e^- \rightarrow had$ BNL g-2 π⁺π⁻π⁰π⁰: 10 2.1 σ FNAL g-2 **HVP** 1.5 σ 83% π⁺π⁻π⁰: BMW, lattice QCD Experimenta 16% π⁺π⁻: 65% Standard Model Average **HLbL** 4.2 σ 17% White Pape Standard Mode Data from: Phys.Rep 887 (2020) 1-166] 19.5 20 20.5 21 18.5 19 21.5 17.5 18 $a_{II} \times 10^9 - 1165900$

- FNAL confirms tension with (dispersive) SM (4.2 σ !)
- Uncertainty dominated by HVP and HLbL
- Tension also between Lattice and Dispersive HVP
- Better understanding strictly needed!

 $\gamma^{(*)}\gamma^{(*)} \rightarrow hadrons$

Initial State Radiation: Scan at Fixed Energy

$$a_{\mu}^{HVP,LO} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

- Dominated by low energy region
- Not accessible in scan mode
- Initial State Radiation (ISR)

$$\sqrt{s'} = \sqrt{s - 2\sqrt{s}E_{\gamma}}$$

• Effectively reduces \sqrt{s}

• Emission suppressed by
$$\frac{\alpha}{\pi}$$

 Radiator function relates ISR to non-radiative process

$$\frac{d\sigma_{ISR}(\sqrt{s'})}{d\sqrt{s'}} = \frac{2\sqrt{s'}}{s} W\left(s, E_{\gamma}, \theta_{\gamma}\right) \sigma(\sqrt{s'})$$

Experimental Inputs to HVP with Initial State Radiation

Initial State Radiation: Scan at Fixed Energy

- \checkmark Access to threshold region
- Normalization fixed over full range
- Consistent data-taking conditions
- X Limited energy resolution
- X Knowledge of radiator function
- **X** FSR contributions

HVP evaluation <2 GeV mostly determined by ISR:

- π⁺π⁻ (80%): KLOE (0.6%) & BaBar (0.7%) | CMD2(0.8%) & SND (1%)
- π⁺π⁻π⁰ (7%): BaBar (1.3%) | SND (4%)
- K⁺K⁻ (3%): BaBar (1.2%) | CMD3 (2%), SND (7%)

Initial State Radiation: Scan at Fixed Energy

- \checkmark Access to threshold region
- Normalization fixed over full range
- Consistent data-taking conditions
- X Limited energy resolution
- X Knowledge of radiator function
- **X** FSR contributions

HVP evaluation <2 GeV mostly determined by ISR:

- π⁺π⁻ (80%): KLOE (0.6%) & BaBar (0.7%) | CMD2(0.8%) & SND (1%)
- π⁺π⁻π⁰ (7%): BaBar (1.3%) | SND (4%)
- K⁺K⁻ (3%): BaBar (1.2%) | CMD3 (2%), SND (7%)

Initial State Radiation: Analysis Strategy

• Only higher masses accessible

- Access to had. threshold region
- Background at high masses

- Largest contributor to both HVP and σ_{HVP}
- KLOE, BaBar, and BESIII ISR measurement ($\delta a_{\mu}/a_{\mu} \leq 1\%$)
- Long standing KLOE-BaBar discrepancy
- ISR technique, but different analysis strategy

$e^+e^- \rightarrow \pi^+\pi^-$: KLOE

Experimental Inputs to HVP with Initial State Radiation

$e^+e^- \rightarrow \pi^+\pi^-$: KLOE

$e^+e^- \rightarrow \pi^+\pi^-$: BaBar

Single measurement: [BaBar Collaboration Physe Rev. 1 (a) 03 (ag09)]

- Tagged strategy
- 232 fb⁻¹ @ Υ(4S)
- Normalization to $e^+e^- \rightarrow \mu^+\mu^-$
- PID for π/μ separation
- Kinematic Fit $(\pi^+\pi^-\gamma(\gamma))$

1.05

0.95

data/QED

• Direct estimate of FSR contribution

0.5

(a)

1.5

2.5

m_{uu} [GeV/c²]

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}, \pi^{0}\gamma, E > 1.8 \text{ GeV: } 7\%$

Single measurement:Tagged strategy

- 2.9 fb⁻¹ @ ψ(3770)
- Neural network for π/μ separation

 $e^+e^- \rightarrow \pi^+\pi^-$: BESIII

• Kinematic Fit $(\pi^+\pi^-\gamma)$

 $\pi^*\pi^*\pi^*\pi^*, \pi^0\gamma, E > 1.8 \text{ GeV}: 7\%$

- Cross check QED prediction ($\mu^+\mu^-$) > Measurement of Γ_{ee} for J/ ψ
- Measurement statistically limited
- Systematics dominated by radiator function (+ luminosity)

Experimental Inputs to HVP with Initial State Radiation

12

$e^+e^- \rightarrow \pi^+\pi^: \text{Perspectives}$

- Plan to achieve 0.5% accuracy
- New analysis on going:
 - Several strategies under test
 - Detailed study of 2γ events (ISR@NLO & ISR+FSR)
 - First results in 1-1.5 years
- Data taking @ $\psi(3770)$: 2.9 \rightarrow 20 fb⁻¹ (2024)

08.11.2022

Experimental Inputs to HVP with Initial State Radiation $\pi^*\pi^*\pi^*\pi^*, \pi^0\gamma, E > 1.8 \text{ GeV}: 7\%$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$: New BaBar Result!

- Fit to VMD model \rightarrow B($\rho \rightarrow 3\pi$) = (0.88 ± 0.38) x 10⁻⁴
- Up to 10% disagreement with SND/CMD2 results
- Strong reduction of uncertainty to a_{μ}

$$a_{\mu}^{3\pi} \left(E < 2 \,\text{GeV} \right) = \left(45.86 \pm 0.14 \pm 0.58 \right)$$

π*ππ*π, π⁰γ, E > 1.8 GeV: 7% KsKı, K*K*

Summary

- Muon (g-2) is still a compelling subject
- Intriguing tensions:
 - Experiment SM dispersive (e⁺e⁻ data): 4.2σ
 - Lattice QCD SM dispersive: 2.1σ
- Crucial contribution from ISR measurement
 - Latest BaBar 3π measurement [BaBar Collaboration Phys.Rev.D 104 (2021)]
- Investigation of possibly overseen source of uncertainties
- New ISR results on 2π channel to come from
 - Reanalysis of "old" data BaBar (2023), BESIII , KLOE?
 - New data BESIII (20 fb⁻¹@ 3.77 GeV by 2024), Belle II

Backup

08.11.2022

Experiments Comparison

- Experiments at colliders with different energy ranges
 ➤ ~1 GeV (KLOE), 2-5 GeV (BESIII), ~10.5 GeV (BaBar)
- Symmetric vs asymmetric beam collisions
- Large drift chamber in KLOE \rightarrow No need for unfolding!
- Impact of FSR (at lower masses) proportional to beam energy