KLOE data and prospects with 1.7 fb $^{-1}$ for a_{μ}^{HLO}

S. E. Müller

Helmholtz-Zentrum Dresden-Rossendorf

Workshop on Muon Precision Physics, Liverpool *November 8, 2022*

Mitglied der Helmholtz-Gemeinschaft

S. E. Müller | HZDR | http://www.hzdr.de

DA Φ **NE: A** ϕ factory

Mitglied der Helmholtz-Gemeinschaft S. E. Müller | HZDR | http://www.hzdr.de

DA Φ **NE: A** ϕ factory

 e^+e^- collider with $\sqrt{s}=m_{\phi}\simeq 1.02~{
m GeV}$

2006:

- Energy scan with 4 points around m_{ϕ}
- 250 pb^{-1} at $\sqrt{s} = 1 \text{ GeV}$

The KLOE detector:

Driftchamber:

 $\sigma_{r\phi} = 150 \mu m$, $\sigma_z = 2mm$ $\sigma_p/p = 0.4\%$ Excellent momentum resolution

The KLOE detector:

Electromagnetic Calorimeter

 $\sigma_t = 54 \text{ps} / \sqrt{E(GeV)} \oplus 100 \text{ps},$ $\sigma_E / E = 5.7 \% / \sqrt{E(GeV)},$ *Excellent time resolution*

Initial State Radiation

Particle factories measure hadronic cross sections as a function of the hadronic c.m. energy using a Radiative Return to energies below the collider energy \sqrt{s} .

Emission of hard γ in the bremsstrahlung process reduces available energy to produce hadronic system.

Initial State Radiation

Relate measured differential cross section $d \sigma_{had+\gamma}/d M_{had}^2$ to hadronic cross section σ_{had} using radiator function $H(s, M_{had}^2)$:

Requires precise calculation of radiator function $H(s, M_{had}^2)$, e.g. from PHOKHARA Monte Carlo event generator.

ISR measurements at KLOE:

Two methods to obtain the 2π -cross section with **KLOE**:

Absolute normalization: Normalize cross section from independent luminosity measurement using Bhabha events:

$$\frac{d\sigma_{\pi\pi\gamma}}{dM_{\pi\pi}^2} = \frac{N^{\rm sel} - N^{\rm bkg}}{\Delta M_{\pi\pi}^2} \cdot \frac{1}{\varepsilon_{\rm sel}} \cdot \frac{1}{\int Ldt}$$

The total cross section is then obtained from

$$\sigma_{\pi\pi}(M^2_{\pi\pi}) = s \cdot rac{d\sigma_{\pi\pi\gamma}}{dM^2_{\pi\pi}} rac{1}{H(s,M^2_{\pi\pi})}$$

ISR measurements at KLOE:

Luminosity is measured at KLOE using large angle Bhabha events:

 $55^{\circ} < \theta < 125^{\circ}$

From the observed events, the integrated luminosity is evaluated via

$$\int L \mathrm{d}t = \frac{N_{\mathrm{obs}} - N_{\mathrm{bkg}}}{\sigma_{\mathrm{eff}}}$$

MC generator used for $\sigma_{\rm eff}$: BABAYAGA@NLO [NPB758 (2006) 22]

- QED radiative corrections using Parton Shower approach
- Theoretical uncertainty around 0.1%
- Allows luminosity measurement at KLOE with 0.3% accuracy

ISR measurements at KLOE:

Two methods to obtain the 2π -cross section with **KLOE**:

Normalization with muons: Normalize $\pi\pi\gamma$ sample in each energy bin with $\mu\mu\gamma$ events:

$$|F_{2\pi}(s')|^{2} = \frac{4(1 + 2m_{\mu}^{2}/s')\beta_{\mu}}{\beta_{\pi}^{3}} \cdot \frac{(d\sigma_{\pi\pi\gamma}/dM_{\pi\pi}^{2})}{(d\sigma_{\mu\mu\gamma}/dM_{\mu\mu}^{2})}$$

The cross section is then obtained from the formula

$$\sigma_{\pi\pi}(s') = rac{\pi lpha^2 eta_{\pi}^3}{3s'} |F_{2\pi}(s')|^2$$

Advantage: Cancellation of systematic effects and radiative corrections

2 pion (muon) tracks at large angles $50^{\circ} < \theta_{\pi,\,\mu} < 130^{\circ}$

2 pion (muon) tracks at large angles $50^o < \theta_{\pi,\,\mu} < 130^o$

Small angle cuts:

Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

- high statistics for ISR events
- low FSR contribution
- suppression of $\phi
 ightarrow \pi^+\pi^-\pi^0$ background
- photon momentum from kinematics:
 - $ec{p}_{\gamma}=ec{p}_{\mathsf{miss}}=-(ec{p}_{+}+ec{p}_{-})$
- threshold region not accessible

2 pion (muon) tracks at large angles $50^{\circ} < \theta_{\pi,\,\mu} < 130^{\circ}$

Large angle cuts:

Photons at large angles

 $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

- lower signal statistics
- higher FSR contribution
- photon detection possible (4-momentum constraints)
- threshold region accessible
- more $\phi
 ightarrow \pi^+\pi^-\pi^0$ background
- irreducible background from
 - $\phi
 ightarrow f_0 \gamma
 ightarrow \pi^+ \pi^- \gamma$

2 pion (muon) tracks at large angles $50^{\circ} < \theta_{\pi, \mu} < 130^{\circ}$

Large angle cuts:

Photons at large angles

 $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

- lower signal statistics
- higher FSR contribution
- photon detection possible (4-momentum constraints)
- threshold region accessible
- more $\phi \rightarrow \pi^+\pi^-\pi^0$ by data ind irreducible off-peak data ind reduced using off-peak mom

Threshold region:

High energetic ISR photon (= small $M_{\pi\pi}^2$) at small angle forces also the pions to small angles, where they escape detection.

 \Rightarrow events with $M_{\pi\pi}^2 < 0.35 \text{ GeV}^2$ ($M_{\pi\pi} < 0.6 \text{ GeV}^2$) are suppressed in small angle analysis.

Barrel EMC DRIFT CHAMBER

Threshold region:

If the high-energy photon is emitted at large angles, also the pions will be at large angles, and can be detected.

 $\Rightarrow 4m_{\pi}^2$ threshold reachable

Threshold region:

MC simulation (PHOKHARA):

The KLOE analyses:

- KLOE05: 60 points between 0.35 and 0.95 GeV², based on 141.4 pb⁻¹ of data taken in 2001^a (small angle photon cuts, normalization to Bhabha and PHOKHARA radiator)
- KLOE08: 60 points between 0.35 and 0.95 GeV², based on 240.0 pb⁻¹ data taken in 2002^b (small angle photon cuts, normalization to Bhabha and PHOKHARA radiator)
- KLOE10: 75 points between 0.1 and 0.85 GeV², based on 232.6 pb⁻¹ data taken in 2006^c with $\sqrt{s} = 1.00$ GeV (large angle photon cuts, normalization to Bhabha and PH0KHARA radiator)
- KLOE12: 60 points between 0.35 and 0.95 GeV², based on 240.0 pb⁻¹ data taken in 2002^d (small angle photon cuts, normalization to μμγ events)

^aPhys. Lett. B**606** (2005) 12

^bPhys. Lett. B**670** (2009) 285

^c Phys. Lett. B**700** (2011) 102

d

Phys. Lett. B720 (2013) 336

The KLOE analyses:

- KLOE05: 60 points between 0.35 and 0.95 GeV²
 based on 141.4 pb⁻¹ of data takes
 (small angle photon c Superseded by KLOE08!)
- KLOE08: 60 points between 0.35 and 0.95 GeV², based on 240.0 pb⁻¹ data taken in 2002^b (small angle photon cuts, normalization to Bhabha and PHOKHARA radiator)
- KLOE10: 75 points between 0.1 and 0.85 GeV², based on 232.6 pb⁻¹ data taken in 2006^c with $\sqrt{s} = 1.00$ GeV (large angle photon cuts, normalization to Bhabha and PH0KHARA radiator)
- KLOE12: 60 points between 0.35 and 0.95 GeV², based on 240.0 pb⁻¹ data taken in 2002^d (small angle photon cuts, normalization to μμγ events)

- Phys. Lett. B670 (2009) 285
- c Phys. Lett. B700 (2011) 102

^aPhys. Lett. B606 (2005) 12

d Phys. Lett. B**720** (2013) 336

The KLOE analyses (2)

The KLOE analyses (2)

The KLOE analyses (2)

Combination of KLOE data

With the help of Alex Keshavarzi and Thomas Teubner, we managed to construct the statistical and systematic correlation matrices for the 60 + 75 + 60 = 195 data points of the KLOE08, KLOE10 and KLOE12 analyses:

http://www.lnf.infn.it/kloe/ppg/ppg_2018/ppg_2018.html

Combination of KLOE data

Using the correlation matrices, it was possible to perform a combination of the three KLOE datasets (JHEP 1803 (2018) 173, arXiv:1711.03085):

Plugging this in the dispersion integral for $a_{\mu}^{\pi\pi}$, one obtains in the range of $0.10 < s < 0.95 \text{ GeV}^2$

 $a_{\mu}^{\pi^+\pi^-} = (489.8 \pm 1.7_{\text{stat}} \pm 4.8_{\text{sys}}) \times 10^{-10}$

The BaBar-KLOE discrepancy

The tension between the two most precise measurements of the 2π -channel spoils the resulting uncertainty on a_{μ}^{HLO} :

The BaBar-KLOE discrepancy

The tension between the two most precise measurements of the 2π -channel spoils the resulting uncertainty on a_{μ}^{HLO} :

The BaBar-KLOE discrepancy

The tension between the two most precise measurements of the 2π -channel spoils the resulting uncertainty on a_{μ}^{HLO} :

A better understanding of this "BaBar-KLOE"-puzzle would contribute to a reduced uncertainty in the a_{μ}^{HLO} -evaluation!

Future improvements using KLOE data

There are about 1.7 pb^{-1} of KLOE data taken in 2004 - 2005 on tape:

data is taken at $\sqrt{s} = m_{\phi}$, which makes the large angle analysis cuts unfeasible

- essentially "replay" KLOE08 and KLOE12 analysis with the newer data
- use increased statistics to improve systematic uncertainties (old KLOE analyses are not limited by statistics)
- benefit from modern analysis techniques

KLOE08 and KLOE12 analysis flow

KLOE08 and KLOE12 systematic uncertainties on $a_{\mu}^{\pi\pi}$

Syst. errors (%)	$\Delta^{\pi\pi}a_{\mu}$ abs [4]	$\Delta^{\pi\pi}a_{\mu}$ ratio	
Background Filter (FILFO)	negligible	negligible	
Background subtraction	0.3	0.6	
Trackmass	0.2	0.2	
Particle ID	negligible	negligible	
Tracking	0.3	0.1	u
Trigger	0.1	0.1	G
Unfolding	negligible	negligible	2
Acceptance $(\theta_{\pi\pi})$	0.2	negligible	9
Acceptance (θ_{π})	negligible	negligible	0
Software Trigger (L3)	0.1	0.1	
Luminosity	$0.3 \ (0.1_{th} \oplus 0.3_{exp})$	-	Ě
\sqrt{s} dep. of H	0.2	-	ild
Total exp systematics	0.6	0.7	
Vacuum Polarization	0.1	-	ÌÈ
FSR treatment	0.3	0.2	3
Rad. function H	0.5	-	
Total theory systematics	0.6	0.2	
Total systematic error	0.9	0.7	

KLOE08 KLOE12

HZDR

Summary

- The KLOE experiment, with data taken in 2001/2002 and (off-peak) in 2006 has performed 4 analyses of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section using the ISR method
- For the KLOE08, KLOE10 and KLOE12 results, the statistical and systematic covariance matrices have been constructed, which allows to perform a combination of the measurements
- When comparing the KLOE results with the result from the BaBar collaboration, a significant difference is found
 - This difference introduces an additional uncertainty in the evaluation of the hadronic contribution to a_μ
- There are about 1.7 fb⁻¹ of additional KLOE data taken in 2004-2005 on tape
- New KLOE analyses of these data could help to settle the "BaBar-KLOE"- puzzle
 - KLOE data is currently maintained by the KLOE-2 collaboration
 - Keep the same binning? Make it finer? $M_{\pi\pi}$ instead of $M_{\pi\pi}^2$?
 - Blinding strategies for the analyses?

- ...