

Liverpool, November 8th 2022

Uppsala UU/Warsaw NCBJ groups

```
Uppsala:
  Stefan Leupold (phen)
   Dispersion relation for hadronic light-by-light scattering: pion pole
   JHEP 10 (2018) 141
   Lars Eklund (LHCb, NNbar @ESS)
   KLOE-2: \eta \rightarrow \pi^+\pi^-\pi^0, e^+e^- \rightarrow \pi^+\pi^-\pi^0
Uppsala/Warsaw
   Andrzej Kupsc: KLOE-2, BESIII
   Light-by-Light (exp+phen),
   MesonNet,
   PrecisionSM (STRONG2020)
   e^+e^- \rightarrow B\overline{B} (exp+phen)
Warsaw: KLOE-2, LHCb:
  Wojtek Wislicki (prev: SMC, COMPASS, NA48)
V. Batozskaya, M.Berłowski, PhD students: N.Salone
                                                   +computing
```


SCIENTIFIC FRONTIERS

INSTRUMENTATION

INFRASTRUCTURES

HIGH ENERGY

The strong interaction at the frontier of knowledge: fundamental research and applications LOW ENERGY FRONTIER

Precise determination of the muon anomalous magnetic moment (g-2)µ; the CKM matrix element Vud from beta decay, and the weak mixing angle from parity-violating electron scattering. Associated novel constraints (or discovery) of physics beyond the SM.	JRA3-PrecisionSM
http://www.strong-2020.eu/ NA4-PREN	Address the "proton-radius puzzle" via combined data-theory

LOW ENERGY

Recent activities Uppsala/Warsaw

- Hyperon-antihyperon system at e^+e^- colliders
- Determination of amplitudes of hyperon decays, CP tests in baryon decays

Methods:

- 1. G.Fäldt, AK PLB **772** (2017) 16 Hadronic structure functions in the e^+e^- → $\Lambda\overline{\Lambda}$ reaction
- 2. E.Perotti,G.Fäldt,AK,S.Leupold,JJ.Song PRD**99** (2019)056008 Polarization observables in e+e- annihilation to a baryon-antibaryon pair
- 3. P.Adlarson, AK PRD **100** (2019) 114005 CP symmetry tests in the cascadeanticascade decay of charmonium
- 4. N.Salone, P.Adlarson, V.Batozskaya, AK, S.Leupold, J.Tandean PRD 105 (2022) 116022 Study of CP violation in hyperon decays at super-charm-tau factories with a polarized electron beam

The BESIII Collaboration*

annihilation

nature physics

Nature Phys. 15 (2019) 631

Phys.Rev.Lett. 129 (2022) 131801

Article Open Access Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

Nature **606**, 64–69 (2022) Cite this article

Other applications of the methods:

BESIII Phys.Rev.Lett. **123** (2019) 122003 : Complete Measurement of the Λ Electromagnetic Form Factors

BESIII *Phys.Rev.Lett.* **125** (2020) 052004 Σ + and Σ polarization in the J/ ψ and ψ (2S) decays

BESIII *Phys.Rev.Lett.* **126** (2021) 092002 Model-Independent Determination of the Spin of the Ω - ...

Spin ¹/₂ baryon octet

Hyperon decay parameter α

$$p \qquad \hat{P} \qquad \hat{P} \qquad \frac{\bar{P}}{\Delta n} \qquad \frac{d\Gamma}{d\Omega} = \frac{1}{4\pi} (1 + \alpha_{\Lambda} \hat{n} \, \bar{P}_{\Lambda})$$

$$A \text{ rest frame} \qquad \Lambda \rightarrow p\pi \qquad \pi^{-1} \qquad \pi^{-1} \qquad p=100 \text{ MeV/c}$$

 $\alpha_{\Lambda} = 0.750(10)$

value before 2018: $\alpha_{\Lambda} = 0.642(13)$

 $\alpha_{\Xi} = -0.392(8)$

Hyperon decay parameter ϕ

 $\Xi
ightarrow \Lambda \pi, \Lambda
ightarrow p\pi$

α, β, γ measurements for $\Lambda \rightarrow p\pi^-$

PHYSICAL REVIEW

15 FEBRUARY 1963

Measurement of the Decay Parameters of the Λ^0 Particle*

JAMES W. CRONIN AND OLIVER E. OVERSETH[†] Palmer Physical Laboratory, Princeton University, Princeton, New Jersey (Received 26 September 1962)

The decay parameters of $\Lambda^0 \to \pi^- + p$ have been measured by observing the polarization of the decay protons by scattering in a carbon-plate spark chamber. The experimental procedure is discussed in some detail. A total of 1156 decays with useful proton scatters was obtained. The results are expressed in terms of polarization parameters, α , β , and γ given below:

 $\begin{aligned} \alpha &= 2 \operatorname{Res} p^* / (|s|^2 + |p|^2) = +0.62 \pm 0.07, \\ \beta &= 2 \operatorname{Ims} p^* / (|s|^2 + |p|^2) = +0.18 \pm 0.24, \\ \gamma &= |s|^2 - |p|^2 / (|s|^2 + |p|^2) = +0.78 \pm 0.06, \end{aligned}$

where s and p are the s- and p-wave decay amplitudes in an effective Hamiltonian $s + \rho \sigma \cdot \mathbf{p} / |\mathbf{p}|$, where p is the momentum of the decay proton in the center-of-mass system of the Λ^0 , and σ is the Pauli spin operator. The helicity of the decay proton is positive. The ratio |p|/|s| is $0.36_{-0.66}^{+0.06}$ which supports the conclusion that the $K\Lambda N$ parity is odd. The result $\beta = 0.18 \pm 0.24$ is consistent with the value $\beta = 0.08$ expected on the basis of time-reversal invariance.

$$P_{p} = \frac{\left(\alpha + P_{\Lambda}\cos\theta\right)\hat{z}' + \beta P_{\Lambda}\hat{x}' + \gamma P_{\Lambda}\hat{y}'}{1 + \alpha P_{\Lambda}\cos\theta}$$

no H_2 target, no magnet; use kinematics and proton's range in carbon to infer E_p

 $\alpha_{\Lambda} = 0.62(7)$

$e^+e^- \rightarrow \gamma^* \rightarrow B\overline{B} \ (\text{spin } 1/2)$

At high energies annihilating e+e- have opposite helicities.

 $e^+e^- \rightarrow J/\psi \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$

event in BESIII detector

Baryon-antibaryon spin density matrix $e^+e^- \rightarrow B\overline{B}$

General two spin ¹/₂ particle state:

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \, \sigma_{\mu}^{B_1} \otimes \sigma_{\overline{\nu}}^{\overline{B}_2}$$

 $(\sigma_0 = \mathbf{1}_2, \sigma_1 = \sigma_x, \sigma_2 = \sigma_y, \sigma_3 = \sigma_z)$ C_{xx} $0\\C_{yy}$ C_{xz} $C_{\mu\overline{\nu}} = (1 + \alpha_{\psi}\cos^2\theta)$ B_1 B1 $\langle \mathbb{S}^2_{R\overline{R}} \rangle$ \overline{B}_2

Results of multidimensional fit

Par.	BES22A	Previous results BES19A
$lpha_{J/\psi}$	$0.4748 \pm 0.0022 \pm 0.00$	$24 0.461 \pm 0.006 \pm 0.007$
$\Delta \Phi$	$0.7521 \pm 0.0042 \pm 0.00$	$80 0.740 \pm 0.010 \pm 0.009$
lpha	$0.7519 \pm 0.0036 \pm 0.00$	$19 0.750 \pm 0.009 \pm 0.004$
$lpha_+$	$-0.7559 \pm 0.0036 \pm 0.0$	$029 -0.758 \pm 0.010 \pm 0.007$
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0$	$011 0.006 \pm 0.012 \pm 0.007$
$lpha_{ m avg}$	$0.7542 \pm 0.0010 \pm 0.00$	- 20

Implications of the BESIII 2019 result

news & views

PARTICLE PHYSICS

Anomalous asymmetry

A measurement based on quantum entanglement of the parameter describing the asymmetry of the Λ hyperon decay is inconsistent with the current world average. This shows that relying on previous measurements can be hazardous.

Ulrik Egede

Status of α_{Λ} measurement

CP test:
$$A_{\Lambda} = \frac{\alpha_{\Lambda} + \bar{\alpha}_{\Lambda}}{\alpha_{\Lambda} - \bar{\alpha}_{\Lambda}}$$
 $A_{\Lambda} = -0.0025(46)$
 $A_{\Lambda} = -\tan(\delta_{P}^{\Lambda} - \delta_{S}^{\Lambda}) (\xi_{P}^{\Lambda} - \xi_{S}^{\Lambda})$

Known strong $p \pi^- s$ and p – wave phases:

 $= 0.12 \left(\xi_P^{\Lambda} - \xi_S^{\Lambda}\right)$

Polarization and C_{ii} for $e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+$

Nature 606 (2022) 64

BESI

 $(g-2)_{\mu}$ related plans:

KLOE-2: contribution to $e^+e^- \rightarrow \pi^+\pi^-$

Modular event generators:

Combine symbolic & high performance numeric calculations

Can be used as p.d.f. fitter (unbinned MLL methods), and to extract acceptance corrected observables