

Delivery of Low Momentum Muons for Muon EDM Studies at Fermilab

Steven Boi Muon Precision Physics Workshop November 9th, 2022

Fermilab's Muon Campus

- Originally the Antiproton Source during the Tevatron-era, the Muon Campus makes use of much of the existing infrastructure.
- **Booster** provides 8 GeV protons.
- Above the 120 GeV Main Injector is the Recycler, forming 8 GeV proton bunches.
- **Target Station** was for \bar{p} production, now for μ production for <u>9-2</u>.
 - Mu2e-mode bypasses target.

Fermilab's Muon Campus

- The \bar{p} accumulator was removed and used for M4/M5.
- The \bar{p} debuncher was modified **Delivery Ring**.
 - Debuncher injection line repurposed as DR abort.
 - 505 m in length,
 1.695 μs revolution period.
- Two new transport lines were constructed, the M4 and M5, for beam delivery to Mu2e and @-2.

Muon Campus Beam Lines

‡ Fermilab

Muon Campus: g-2 Mode

- 8 GeV proton bunches (10¹² protons/bunch) are sent to the target station from the Recycler (15.4kW).
- From the target station, only 3.1 GeV/c particles are propagated.
 - Mostly p, some π^+ , and few μ^+ .
 - μ^+ -beam comes from π^+ decay.
- Proton contamination is removed by making 4 turns in the DR and sent to abort.
- μ^+ are extracted to g-2.

Muon Campus: Low-Momentum Mode

- 8 GeV proton bunches (10¹² protons/bunch) are sent to the target station from the Recycler (15.4kW).
- From the target station, only 300 MeV/c particles are propagated.
 - Mostly p, some π^+ , and few μ^+ .
 - μ^+ -beam comes from π^+ decay.
- Proton contamination is removed by making 4 turns in the DR and sent to abort.
- μ^+ are extracted to g-2.

AP0 Target Station

- 8 GeV primary proton beam is incident on an Inconel-600 target.
- Secondary pions are produced and focused by a lithium lens towards a horizontal bending magnet (PMAG).
- A copper collimator sits between the lens and PMAG.
- PMAG provides momentum selection via a 3° horizontal bend into the M2/M3 transport line.
 - Low momentum acceptance for transport, $\Delta p/p \approx \pm 4\%$

Target

Li Lens

Cu Collimator

PMAG

🛠 Fermilab

AP0 Target Station: G4Beamline

- The model begins with an 8 GeV primary proton beam incident on the production target.
- A simple model of the lithium lens is included, with the field region only extending the length of the lithium core (16cm).
 - Includes supporting titanium and beryllium windows.
 - Field goes as $B_{\phi} = \frac{\mu_{Li}I}{2\pi R^2}r$ for r < R and $B_{\phi} = \frac{\mu_0I}{2\pi r}$ for r > R
 - Lithium is R = 1cm, $\ell = 16cm$, spaced 310mm to lens (C/C)

M2/M3 Transport Line: G4Beamline

- PMAG bends 3° into the M2/M3 transport line.
 - M2 line goes through AP0 target station.
 (g-2 mode)
 - M3 bypasses AP0 target station. (Mu2e mode)
 - The M2 line merges with the M3 line 47m downstream of PMAG.
- M2/M3 line transports $\Delta p/p \approx \pm 4\%$
 - Ring acceptance is much lower at Δp/p≈ ±0.25%.

G4Beamline Key Points

- Simulated 100M protons on target (POT).
- Using physics list FTFP_BERT at the recommendation of Geant expert Vladimir Ivantchenko.
- Only considering π^+ after the production target.
 - Decays set OFF.
 - No protons or other particles propagated.
 - Momentum cuts only applied in analysis.
- World material is vacuum.
 - Effects of air in target region were not statistically significant.

🗲 Fermilab

- Stopped simulation at upstream of the injection-CMAG, before entering the Delivery Ring (DR).
 - From here on referred to as 'CMAG'.

Magic Momentum Baseline

- Using 3.1GeV/c π^+ yield for comparisons:
 - Beamline optimized for 3.1GeV/c transport.
 - M2/M3 line transports $\Delta p/p \approx \pm 4\%$, so momentum cut of 3100MeV/c ± 124MeV/c is made.

🚰 Fermilab

• π^+ at locations (within respective apertures):

Location		π^+ 3.1 GeV/c \pm 124 MeV/c				
Lithium	Upstream	180229 (6806)	-	1.8×10 ⁻³ (6.8×10 ⁻⁵)		
Lens (R=1cm)	Downstream	98845 (3674)	/ielc	9.8×10 ⁻⁴ (3.6×10 ⁻⁵)		
PMAG (5 x 3.5cm)	Upstream	(10089)	OT ,	(1.0×10 ⁻⁴)		
	Downstream	(8545)	Per P	(8.5×10 ⁻⁵)		
Upstream CMAG		3808		3.8×10 ⁻⁵		

300MeV/c Baseline

- Determine π^+ yield for 300MeV/c scenario:
 - A total of 100M POT were simulated.
 - Same data set as 3.1GeV/c case, geometry unchanged.
 - Beamline optimized for 300MeV/c transport.
 - Scaling of lithium lens and magnet strengths $(300/_{3094} = 0.09696)$.
 - Momentum cut of 300MeV/c \pm 12MeV/c is made ($\Delta p/p \approx \pm 4\%$).
- π^+ at locations (within respective apertures):

Location		π^+ 300 μ	Ratio to 3. 1 <i>GeV/c</i>		
Lithium Lens (R=1cm)	Upstream	895175 (1647)	7	8.9×10 ⁻³ (1.6×10 ⁻⁵)	4.97 (0.24)
	Downstream	97989 (2304)	OT Yield	9.7×10 ⁻⁴ (2.3×10 ⁻⁵)	0.99 (0.63)
PMAG (5 x 3.5cm)	Upstream	(1316)		(1.3×10 ⁻⁵)	(0.15)
	Downstream	(425)	Per P	(4.2×10 ⁻⁶)	(0.05)
Upstream CMAG		21		2.1×10 ⁻⁷	0.005
					🗕 🛟 Fermilab

3.1GeV/c vs 300MeV/c Upstream LiL

• Upstream of the Lithium Lens (after the target), there is already a deficit of low-momentum π^+ produced at angles that can fall within the acceptance of the Lithium Lens.

Target Path Length vs Angle @ 300MeV/c

 Scattering and yield are not significantly affected by changing the path length through the target.

θ vs Target Path Length 300MeV/c Upstream LiL [100M POT]

Target Path Length vs Angle Downstream LiL

- Downstream of the LiL the yield remains unchanged.
- It appears there is difficulty adequately focusing the low-momentum π^+ .
 - No improvement by varying the lens strength.

Lithium Lens Effects

- Poor focusing in the 300MeV/c case.
 - Focusing strength was at the optimal value as confirmed by scanning the lens strength.
 - Material interactions with lens.

 $300 MeV/c \pm 4\%$ After LiL

 $3.1 GeV/c \pm 4\%$ After LiL

‡ Fermilab

Lithium Lens Effects

• Removal of the lens material but retaining the focusing field improves the focusing and the number of π^+ reaching CMAG.

• Removal of the lens entirely (field and material) yields the same results as leaving the lens in.

π^+ @ Loc	W/Lens	Field Only	W/o Lens	3.1GeV vs v	v/o Lithium
Downstream PMAG	425	3035	300	8545	9597
Upstream CMAG	21	335	22	3808	4931
					Fermilab

Lithium Lens Materials

- The central region of the Lithium Lens is comprised of Beryllium windows and Lithium (obvio).
- Possible bug in materials for low-energy particles?
- From the PDG:

Lithium (16cm)

Nuclear collision length	52.2	g cm ⁻²	97.69	cm
Nuclear interaction length	71.3	g cm ⁻²	133.6	cm
Pion collision length	79.1	g cm ⁻²	148.2	cm
Pion interaction length	103.3	g cm ⁻²	193.4	cm
Radiation length	82.78	g cm ⁻²	155.0	cm

Beryllium (2cm)

Nuclear collision length	55.3	g cm ⁻²	29.93	cm
Nuclear interaction length	77.8	g cm ⁻²	42.10	cm
Pion collision length	82.4	g cm ⁻²	44.60	cm
Pion interaction length	109.9	g cm ⁻²	59.47	cm
Radiation length	65.19	g cm ⁻²	35.28	cm

	Location	N_{π^+}
Se	Downstream LiL	97989
Ba	Downstream PMAG	425
	Upstream CMAG	21

	Location	N_{π^+}
	Downstream LiL	98512
S	Downstream PMAG	1105
	Upstream CMAG	39

	Location	N_{π^+}
B	Downstream LiL	98270
20	Downstream PMAG	709
2	Upstream CMAG	25
		🕻 Fermilab

Consideration of Alternative Focusing

- As an exercise, a "thin-lens" (w/o material) focusing device was considered at approximately 200mm downstream of the target.
 - Length of the field region was 1cm, and was modeled as:

$$B_{\phi} = \frac{\theta(B\rho)}{\ell}$$

- Field strength was such that it would properly focus only particles that could be geometrically within the downstream acceptance of the upstream most quadrupole (Q801) in the M2/M3 transport line.
 - Restriction by PMAG aperture, collimator removed.
- Low-mass focusing devices generally provide weaker fields.

Consideration of Alternative Focusing

 The benefits of such a bending device is only realized at short distances to the target due to the greater solid angle for particle collection/focusing.

Li Lens Field Only

		Location			N_{π^+}			
		Downstream LiL		L	106592 (2832 <1cm)	106592 (2832 <1cm) π^+ /POT		
		Downstream PMAG			3035	3.	3.3×10 ⁻	
		Upstream CMAG		G	335			
650mm Dowr			istream Target		200mm Downstream Targe			
	Location		N_{π^+}		Location		N_{π^+}	
π^+ /POT 1.5×10 ⁻⁶	Downstream Li	L	102948 (681 <1cm)	D	Downstream LiL		108467 (4951 <1cm)	π^+ /POT 4 0×10 ⁻⁶
	Downstream PM	AG	3541	Dov	Downstream PMA		12353	1.07(10
	Upstream CMA	G	154	U	Upstream CMAG		400	
							¥	Fermilab

What about other losses?

• Recall for the baseline simulations:

Location			π^+ 300 MeV/c \pm 12 MeV/c			π^+ 3.1 Ge \pm 124 Me	Ratio to 3.1 <i>GeV/</i> <i>c</i>		
Lithium	Upstream	Yield	(1.6×10 ⁻⁵)	4%		(6.8×10 ⁻⁵)	.7%		(0.24)
(R=1cm)	Downstream	POT	(2.3×10 ⁻⁵)	\downarrow	3%	(3.6×10 ⁻⁵)	$\leftarrow 4$	70%	(0.63)
PMAG	Upstream	Per l	(1.3×10 ⁻⁵)	7%	$\leftarrow 4$	(1.0×10 ⁻⁴)	5%	\uparrow	(0.15)
(5 x 3.5cm)	Downstream		(4.2×10 ⁻⁶)	46	5%	(8.5×10 ⁻⁵)	$\leftarrow 1$	%	(0.05)
Upstream CMAG			2.1×10 ⁻⁷		49	3.8×10 ⁻⁵		←45	0.005

Q801

- The most significant loss points are at PMAG and entering the transport line.
 - The momentum acceptance for Q801 to PMAG should be \pm 34MeV/c (~11%).
 - Seems to imply sensitivity to focusing.

PMAG

- Losses later in transport due to poor entry.

🚰 Fermilab

Summary Remarks and Interpretations

- Current outlook: there is room for improvement.
 - 10⁻² lower π^+ yield for 300MeV/c vs 3.1GeV/c.
 - Need MARS comparison and real beamline measurements.
 - A beam study (or studies) will be made this run.
- It appears that the major problems is with focusing the lowmomentum particles:
 - The lower momentum π^+ are at higher angles, which require more focusing.
 - Material effects of lithium lens.
 - Running w/o lens is equivalent to running w/lens.
 - Restrictive apertures.
- Proton contamination still needs to be investigated.

