

Charged Lepton Flavour Violation

Becky Chislett Workshop on muon precision physics University of Liverpool 9th November 2022

Charged Lepton Flavour Violation

Mu2e, COMET, Mu3e and MEG-II look for the neutrinoless conversion of a muon to an electron

Observed in the neutral sector through neutrino oscillations

Probes a wide range of different physics models

In the SM rate is O(10⁻⁵⁰) Any observation is a sign of new physics

UCL

Charged Lepton Flavour Violation

Mu2e, COMET, Mu3e and MEG-II look for the neutrinoless conversion of a muon to an electron

Updated from A. de Gouvea, P. Vogel, arXiv:1303.4097

L C L

CLFV in the presence of a nucleus

The neutrinoless conversion of a stopped muon to an electron produces a mono-energetic electron signal

Signal

Î U C

The Mu2e experiment

Î UCL

The experiment is designed to produce a low energy beam of muons which are captured on a stopping target

UK contributions to Mu2e - STM

Need excellent energy resolution at high rate to detect the x-rays from muon capture on the nucleus

Determines the overall rate for normalization of the experiment

UK contributions to Mu2e - STM

DAQ HARDWARE

Mu2e-II

Mu2e-II proposes to improve by a further order of magnitude using the PIP-II beam:

- Narrower pulses
- Less pulse to pulse variation
- Higher intensity
- Higher duty factor

Also involves improvements to most other parts of the experiment

Simulations of different geometries and prototypes of different technologies are ongoing

COMET

^AUCL

COMET phase-I:

 Factor of 100 improvement on current limit

COMET phase-II:

Improvement of a further factor of 100 (same as Mu2e)

UK contributions to COMET

UCL

Installation of the variable beam mask system built in the UK to study the optics of the superconducting solenoid

Runs starting in a few months time

The Mu3e experiment

L C L

The Mu3e experiment

PSI provides a constant low momentum (29 MeV) continuous muon beam with 10⁸ muons per second on target

Integration run in 2021, construction of scintillating fibres, tiles and pixel next year with completion in 2024, physics data taking from 2025

- Phase I : 1000x improvement on current limit
- Phase II : use HIMB to achieve a further factor of 10

UK contributions to Mu3e

Outer pixel layers being built in the UK

Inner pixel layer prototype for beam test at PSI in 2021.

Also: Physics Coordinator (Gavin Hesketh), pixel project leader (Joost Vossebeld), MC coordinator (Carlos Chavez) and extensive contributions to computing and analyses preparation

Conclusions

The UK is involved in a variety of different CLFV searches:

- Mu2e at FNAL (Liverpool, Manchester, UCL)
- COMET at J-PARC (Imperial)
- Mu3e at PSI (Bristol, Liverpool, Oxford, UCL)

Expect exciting results with large increases in sensitivity over the coming years